
WARSAW UNIVERSITY
OF TECHNOLOGY

Faculty of Electronics
and Information Technology

Ph.D. THESIS

Przemysław Więch, M.Sc.

Distributed Default Reasoning in the Semantic Web

Supervisor
Professor Henryk Rybiński, Ph.D., D.Sc.

Warsaw, 2011

Streszczenie

Rozprawa przedstawia nowatorskie podej́scie do rozproszonego wnioskowania

w systemie wieloagentowym, w którym bazy wiedzy agentów wyrażone s ↪a przy

pomocy logik opisowych z domniemaniami. W Semantycznym Internecie (ang.

Semantic Web) wiedza jest rozproszona pomi ↪edzy wiele niezalażnych jednostek. Agent

w takim systemie wieloagentowym może potrzebować zebrać informacje z różnych

zdalnych źróde l, aby odpowiedzieć na zadane pytanie. Logika domniemań może

zostać w l ↪aczona do logiki opisowej w celu w laściwego traktowania niepe lnej wiedzy

i umożliwienia wycofywania si ↪e z wniosków, które sta ly si ↪e sprzeczne z aktualnym

stanem bazy wiedzy. Praca przedstawia formalizm transformacji domniemań, który

może zostać wykorzystany do wyprowadzania odpowiedzi na zapytania w postaci

domniemań. Tak powsta le domniemania mog ↪a być traktowane jako pośrednie

rezultaty w procesie wnioskowania. W pracy pokazano, że przekazywanie komunikatów

zawieraj ↪acych domniemania powsta le w wyniku transformacji niesie wi ↪ecej informacji

niż przekazywanie faktów, a także pozwala na unikni ↪ecie zbyt szybkiego wyci ↪agania

wniosków na podstawie domniemań. Praca przedstawia również model systemu

wieloagentowego wykorzystuj ↪acego zaproponowane algorytmy. Zaprezentowana jest

również implementacja prototypowego systemu, który l ↪aczy w sobie wszystkie

zaproponowane algorytmy.

S lowa kluczowe: Semantic Web, system wieloagentowy, rozproszone wnioskowanie,

logika domniemań, logika opisowa.

Abstract

The dissertation presents a novel approach to distributed reasoning in a multi-agent

system, in which the agents’ knowledge bases are expressed in the language of

description logic with defaults. In the Semantic Web environment, knowledge is

distributed among many independent entities. An agent in such a multi-agent system

may need to gather information from several remote sources in order to provide an

answer to a query. Default logic can be embedded into description logic in order to

handle incomplete knowledge, where it should be possible to retract inferences, which

are proved to be incorrect. The thesis proposes a formalism of default transformations,

which can be used to derive answers to queries in the form of defaults. Such new

defaults can then be treated as intermediate results in the reasoning process. It is

shown that passing messages containing transformed defaults is more informative than

strict statements and avoids reaching conclusions too early. Furthermore, the model

of a multi-agent system, which utilizes the proposed algorithms is proposed. Finally,

the work describes the implementation and evaluation of a prototype system, which

combines all of the introduced algorithms.

Keywords: Semantic Web, multi-agent system, distributed reasoning, default logic,

description logic.

Acknowledgements

I would like to thank my supervisor, Henryk Rybiński, for his support and guidance

over the years. Without his continuous belief in me, this work would not have been

finished.

I am grateful to my family for supporting me in every moment. I would especially

like to thank my wife, Magda, for her endless understanding and patience.

I would like to express my appreciation to my fellow Ph.D. students and employees

of the Division of Information Systems for the many insightful discussions.

Przemys law Wi ↪ech

Warsaw, 2011

The research was supported by the Polish National Budget Funds 2009–2011 for

science under the grant N N516 378136.

Contents

1 Introduction 13

2 Related work 19

2.1 Semantic Web . 19

2.1.1 Ontologies . 22

2.1.2 Ontology languages . 23

2.1.3 Description Logic . 25

2.1.4 OWL . 26

2.1.5 Open and closed world assumptions 27

2.2 Distributed Environment . 29

2.2.1 Multi-Agent Systems . 29

2.2.2 Knowledge Distribution . 30

2.3 Default Logic . 33

2.3.1 Distributed Default Logic . 34

2.3.2 Embedding Defaults in Description Logic 35

3 Basic Concepts and Definitions 37

3.1 Description Logics . 37

3.1.1 Definitions . 37

3.1.2 Tableau reasoning algorithm . 40

3.2 Distributed Description Logic . 41

3.3 Default Logic . 42

3.3.1 Definitions . 42

3.3.2 Default Reasoning . 46

3.4 Description Logic with Defaults . 47

Contents

4 Distributed Description Logic with Defaults 51

4.1 Motivating example . 52

4.2 Transforming defaults . 55

4.3 Reasoning with default transformations 60

5 DDLD-based Multi-Agent System 65

5.1 Motivating examples . 66

5.2 Model of the system . 68

5.2.1 Global knowledge . 69

5.2.2 Domain knowledge . 69

5.2.3 Communication language . 70

5.2.4 Environmental knowledge . 71

5.3 Distributed reasoning . 72

5.4 Handling inconsistency . 75

5.5 Knowledge assimilation and caching . 76

5.6 Agent network topology . 77

6 Implementation and evaluation 79

6.1 System architecture . 79

6.1.1 The Description Logic Reasoner 81

6.1.2 The Default Logic Reasoner . 82

6.1.3 Distributed Reasoning . 82

6.2 Test cases . 83

6.2.1 Chain of agents . 83

6.2.2 Star topology . 85

6.2.3 Pizza ontology . 86

6.3 Summary . 89

7 Conclusions 91

Abbreviations and Symbols 93

References 95

10

Contents

A Software technical documentation 103

A.1 Description logic reasoner . 103

A.2 Default logic reasoner . 107

A.3 Default transformations . 109

A.4 Distributed reasoning . 109

11

Chapter 1

Introduction

The current World Wide Web can only be viewed as a syntactic structure of web pages

in which search engines analyse only sequences of words detached from their meaning.

The idea for transforming the existing Web, named Semantic Web [16], envisions the

knowledge contained in the Web to be expressed in a formalised way to make it possible

to be processed on the level of semantics. The semantic information is intended to be

integrated into web pages and other web resources by means of annotating data and

supplying concrete meanings to terms. This process is expected to lead to a network of

linked data, which is seen as a concept similar to joining tables in a relational database.

In this case, however, it should be possible to link data from different remote sources.

The research concerning the elements of the Semantic Web is very active. There

is work on knowledge representation in designing expressive ontology languages to

describe information. Tools are being built for creating and maintaining ontologies

and adding semantics to web pages. Moreover, Semantic Web Services are considered

as a way to remotely access semantic information. The Internet is a decentralized

environment and it is impossible to store information in one location. This is why

distributed algorithms are needed to make use of all accessible information. The

Semantic Web vision is also connected to the notion of agents and multi-agent systems

working in a peer-to-peer network. Agents are envisioned to perform tasks on behalf of

their users by collecting information from remote sources and by communicating with

Chapter 1. Introduction

other agents. In this case, the role of ontologies is to provide the agents with a common

vocabulary for knowledge exchange.

The Semantic Web requires a knowledge representation (KR) formalism to express

the knowledge in the Web. KR has a long history in the domain of artificial intelligence,

where it is intended to represent world objects, their properties and relationships

between objects. Techniques such as frames, logic programs and semantic networks

form the foundation for today’s knowledge representation methods.

Ontologies fulfill the necessity to formally convey information and act as a

conceptualisation of a specialisation [28]. Their purpose is to systematically express

knowledge, enable different systems to communicate using a vocabulary with common

semantics and to simplify the reuse of gathered knowledge. Ontologies define concepts,

which are used to describe world objects, and relationships between concepts or objects.

It is required that ontology languages have a well defined syntax and semantics, an

adequate degree of expressivity and support for reasoning mechanisms.

The logical formalism behind ontologies is provided by description logics (DLs)

[10], which are a family of knowledge representation languages. DLs are constrained

subsets of first-order logic that provide efficient reasoning algorithms. A description

logic knowledge base is constructed in terms of concepts, roles and individuals. The

primary inference tasks in description logics are subsumption checking and instance

checking. The former tests whether all instances of one concept are instances of another

concept, whereas the latter checks whether a concrete individual is an instance of a

given concept. Today, the most often used ontology language is OWL (Web Ontology

Language) [52] which is based on an expressive description logic.

In the domain of databases, the closed-world assumption (CWA) is commonly used

in representing data. It says that if a fact cannot be proved to be true, then it

is presumed to be false. Thus, negative information does not have to be explicitly

included. In contrast, the knowledge accessible on the Web by its nature cannot be

treated as a closed and complete knowledge base. Because of this, the Semantic Web

knowledge representation formalisms are based on the open-world assumption (OWA),

which states that if something is not known, it cannot be treated as being false. This

14

way, the knowledge base behaves monotonically – newly introduced facts do not falsify

previous conclusions.

The closed-world assumption, can also be beneficial in some cases in such an open

environment as the Semantic Web. Making assumptions is a commonsense way of

reasoning about incomplete information. For example, it is justified to assume that

most birds fly, although there are some known exceptions. When presented with

an unknown bird, which does not belong to the known exceptions, it is a rational

conclusion that it does fly. Expressing such assumptions is possible when dealing with

nonmonotonic logic formalisms [4].

One of the most studied examples of nonmonotonic logic is default logic proposed

by Raymond Reiter [59]. This formalism allows to express defaults as rules, which

are defeasible. By providing an exception, the conclusion made by a default rule can

be invalidated. Introducing the notion of defaults into the Semantic Web knowledge

representation formalisms can improve the expressivity of online knowledge bases and

allow dealing with incomplete knowledge.

The Semantic Web is an inherently distributed environment. A peer in the Web can

represent an online service (Web Service), software agent or information source. Peers

have local knowledge bases and reasoning engines, however it is desirable for an agent

to query the peers’ combined knowledge. Apart from dealing with knowledge bases of

different entities, distributed reasoning is used to increase efficiency by splitting the

knowledge base into partitions with local reasoning engines. Moreover, the Semantic

Web is already made of separate but interconnected ontologies. The aim of distributed

reasoning is to combine the knowledge that is located within the peers in the Web

and make conclusions based on the joined knowledge. An important property of the

Semantic Web is that distributed reasoning has to take into account that the knowledge

is already partitioned and one has no influence on the way the partitions are formed.

In the environment of a multi-agent system, the agents communicate using a

formalised protocol. Among many protocols, which can be used in a multi-agent

system, the simplest and most commonly used is the query-answer method, where an

agent issues a query to another agent, which in turn returns an answer according to its

15

Chapter 1. Introduction

knowledge base. This simple interaction is presented by the Foundation for Intelligent

Physical Agents as the FIPA Query Interaction Protocol1. One of the primary reasoning

tasks in description logics is the subsumption problem, where we are interested whether

a concept C is a subconcept of D, which means that all instances of C also belong to

D. This reasoning task can be translated into a query, which is sent between agents.

Using description logic without defaults, the answer to such a query can only be positive

or negative. However, when the agent, which is queried can reach a positive answer

only by applying defaults, it makes some assumptions, which could later be proved to

be incorrect. If this agent answers with a simple positive statement, the information

about these assumption is lost. In this work, we propose a method that enables agents

to exchange defaults in reply to subsumption queries. This method preserves the

assumptions made during reasoning and reduces the loss of information when dealing

with defaults.

In order to achieve this goal, the formalism of default transformations is introduced.

We show a set of basic default transformations, which have the property that adding

a transformed default to the original knowledge base results in obtaining the same

conclusions as if the reasoning was made with the original default theory. By applying

a series of transformations, we can obtain a default, which can be used as an answer to a

subsumption query. We introduce the algorithm for finding transformed defaults, which

match a sumbsumption query, if this query cannot be resolved with a simple positive

or negative answer. This algorithm is based on several other algorithms. Firstly, a

tableau reasoning procedure is used for the underlying description logic [10]. Secondly,

we use the method of Risch and Schwind [61] for calculating the extensions of a default

theory. Lastly, a method described by Kalyanpur [43] is used for determining maximal

consistent subsets of description logic statements.

For the default reasoning formalism we have built a model of a multi-agent system

for exchanging knowledge in the Semantic Web. An agent in this model consists of

domain and environmental knowledge. Moreover, the agent can use global knowledge

publicly available online. We describe a distributed reasoning algorithm, in which

1http://www.fipa.org/specs/fipa00027/

16

the agents exchange queries and answers to reach a specified goal. The algorithm

introduces a tableau rule that triggers sending queries to remote agents. Opposite

to the existing proposals for using default reasoning, we presume that not only the

logical values or induced facts can be subject of exchange between agents, but also the

“deduced” default rules, so that the agent can properly continue reasoning. To this end

our method utilizes the previously introduced default transformations to provide the

possibility of exchanging defaults between agents.

The thesis of this dissertation is formulated as follows:

1. Default logic embedded in description logic makes it easier to deal with

incomplete knowledge.

2. Description logic combined with default logic is an appropriate method

for knowledge representation in the Semantic Web environment.

3. This method appropriately treats the incompleteness of descriptions and

is suitable for distributed reasoning in a multi-agent system.

4. Distributing the reasoning processes leads to the improvement of

efficiency.

The dissertation is composed of seven chapters.

Chapter 2 contains an overview of the state of the art in the domain of the Semantic

Web, multi-agent systems and default logic. The concept of ontologies for knowledge

representation and exchange is introduced together with ontology languages used to

express information. The problem of distributed reasoning in the Web is presented in

the context of multi-agent systems. Finally, the nonmonotonic default logic is described

as a way to express assumptions about incomplete knowledge and introducing the

closed-world assumption to open-world knowledge bases.

Chapter 3 introduces the definitions and algorithms connected with description

logics, default logic and the combination of these two formalisms.

Chapter 4 focuses on the logical apparatus of description logic with defaults (DLD)

with the emphasis on preparing the local knowledge base for answering queries in

a distributed system. The notion of default transformations is introduced and a

17

Chapter 1. Introduction

theorem regarding the application of default transformations is presented. Finally,

the algorithm for reasoning in a DLD knowledge base is described that makes use of

default transformations.

In Chapter 5 the model of a multi-agent system for distributed reasoning is

presented. The model makes use of the inference method described in the previous

chapter in which the components of the agent knowledge base and the algorithm for

distributed reasoning through exchanging knowledge between agents are presented.

Chapter 6 provides a description of a prototype implementation of the multi-agent

system proposed in the previous chapters. Key components of the system architecture

are introduced and implementations of specific problems are discussed. Finally, the

proposed algorithms are evaluated in terms of correctness and scalability.

Chapter 7 concludes the thesis outlining the main claims and results. Moreover,

perspectives for future research interests are presented.

18

Chapter 2

Related work

2.1 Semantic Web

The World Wide Web currently consists mostly of linked hypertext documents, which

are readable for people but are not prepared for computers to acquire information from

them because they are written in the natural language. Instead, computer programs can

only treat texts as streams of words, which are not connected with their meaning. Even

information which comes from databases is often stripped from its original structural

information. Moreover, the HTML markup language, which is primarily used to create

web pages, contains only presentational information without any semantic annotations.

The Semantic Web [16, 6, 36] is a vision for transforming the World Wide Web into

a semantically rich web of information. Such information could be collected and

processed by computer programs not only as sentences in natural language, but as

knowledge which is associated with its actual meaning. In consequence, computers

could interpret the contents of the web in the Way the authors of the information had

meant it.

The Semantic Web, just as the Internet and the World Wide Web, is decentralized

and open for everyone to add content. Moreover, people publish content in various

forms such as text, images, sound and video. The Web also spans across languages and

cultures. This makes it very hard to capture the meaning of each piece of information

made public on the Web by individuals around the world.

Chapter 2. Related work

In order to be able to express the meaning of information stored in the Web,

a language for knowledge representation is needed, which would allow computers to

process it, link related information and infer new facts from the available knowledge.

The current trend in the Semantic Web community is to utilize ontologies for expressing

knowledge in the Web.

User interface and applications

Trust

Proof

Unifying logic

Querying:
SPARQL

Ontologies:
OWL

Rules:
RIF/SWRL

Taxonomies: RDFS

Data interchange: RDF

Syntax: XML

Identifiers: URI Character set: UNICODE

C
ry

p
tograp

h
y

Figure 2.1: The Semantic Web stack

Figure 2.1 presents the Semantic Web Stack, which was first proposed by Tim

Berners-Lee in one of his presentations 1. The diagram shows the main layers of the

Semantic Web vision. The Semantic Web utilizes the same underlying technologies as

the current World Wide Web. Uniform Resource Identifiers (URIs) to identify web

1http://www.w3.org/2000/Talks/1206-xml2k-tbl/slide10-0.html

20

http://www.w3.org/2000/Talks/1206-xml2k-tbl/slide10-0.html

2.1. Semantic Web

resources, Unicode as the standard character encoding and XML as a universal data

format are already the dominant standards. The Resource Description Framework

(RDF) is a basic data model and together with RDF Schema is also becoming the

standard as the base for knowledge representation on the Web. The next layer specifies

three components, which represent the need for a query language for the knowledge in

the Semantic Web, a rich ontology language for world descriptions and a rule language

to complement the knowledge representation. The unifying logic layer’s role is to merge

the lower layers into a single logical view of the knowledge represented by ontologies

and rules. The proof layer involves obtaining, presenting and validating proofs. The

trust layer uses digital signatures and other information to verify information, which

is exchanged on the Web.

Horrocks et al. [37] provide an alternative layering of the Semantic Web stack,

where it should be split into “two towers”, where the rules component should be placed

directly on top of the XML layer beside the RDF, RDFS and OWL stack. This model

is motivated by the fact that current rules languages for the Semantic Web are based

on Datalog, which follows the closed world assumption, and as such is incompatible

with RDF, which is based on first-order logic and the open world assumption. Rules

language extensions such as negation as failure (NAF) can be then placed on top of

the rules layer.

This work’s contribution extends the ontology component by adding support for

distributed reasoning with the addition of defaults to an ontology language based on

description logic.

The ability to search for information is crucial for the Web. There are currently

great amounts of documents which can only be indexed by keywords or the words

contained in these documents. There is a significant need for searching for information

based on its semantics. Moreover, once relevant documents are found, the required

information has to be extracted from its content. It is a very complex task, requiring

advanced natural language processing, to create software which would give precise

answers to questions based on natural language texts. Moreover, the sought facts often

cannot be obtained from a single source. This implies that an agent has to be run

21

Chapter 2. Related work

to collect information from different sources and combine it to form the answer to a

query. Finally, once a software agent collects some information, it has to present it in

a readable way to the user. It can also be required to be able to display an explanation

of the information, for example in the form of information sources and reasoning steps

taken to achieve the goal.

The works [16] and [6] provide real-world example scenarios, where a Semantic

Web agent searches for a specialist to establish an appointment, checks the user’s

schedule, negotiates the price, looks up the specialists’ ratings in an independent source

and after presenting several choices, takes necessary actions to finalize the task. The

authors of The Semantic Web Primer [6] claim that such scenarios are already feasible

from the scientific point of view. Progress now has to be made in the integration,

standardization, development and adoption of semantic tools, which are already being

created.

2.1.1 Ontologies

The term ontology originally refers to the subfield of philosophy, which deals with the

nature of existence. This branch of metaphysics tries to identify and describe the

things that actually exist. The studies date back to Plato and Aristotle, where the

well-known “Tree of Porphyry” (Figure 2.2) tries to present a categorisation of world

entities and their distinguishing features. The word ontology has recently been adopted

by computer science with a different meaning. The definition given by Studer et al.

[73], which extends Gruber’s definition [28], states that “an ontology is an explicit and

formal specification of a conceptualization”.

The role of ontologies in computer science is to formally describe a domain of

discourse. Usually an ontology will contain a set of terms together with relationships

between them. The terms typically denote classes of objects and relationships include

the most often used is-a hierarchy and other domain-specific associations.

In the Semantic Web setting, ontologies provide a shared vocabulary for expressing

statements in a domain. They are needed to alleviate the problem of differences in

terminology.

22

2.1. Semantic Web

Supreme genus:

Differentiae:

Subordinate genera:

Differentiae:

Subordinate genera:

Differentiae:

Proximate genera:

Differentiae:

Species:

Individuals:

Substance

material immaterial

Body Spirit

animate inanimate

Living Mineral

sensitive insensitive

Animal Plant

rational irrational

Human Beast

Socrates Plato Aristotle etc.

Figure 2.2: Tree of Porphyry as drawn by Peter of Spain (1239)

2.1.2 Ontology languages

Ontology languages allow us to describe domain models There are several key

requirements of an ontology language [6]. A well-defined syntax is necessary for parsing

and automated processing of information. Contemporary ontology languages are built

upon the XML and RDF syntax. A formal semantics is needed to precisely define

the meaning of knowledge. The semantics of ontologies is usually based on a logic

formalism, such as first-order logic. Formal semantics is needed to make each statement

unambiguous. An ontology language has to support efficient reasoning, which is enabled

by the formal semantics of the language. Reasoning support is required among others in

order to check the consistency of a knowledge base and to answer queries. For example,

the OWL ontology language is based on description logic and thus existing DL reasoners

can be employed. A sufficient expressive power is also required to describe as many

aspects of a domain as possible. Every ontology language will have its limitations as

23

Chapter 2. Related work

to the knowledge it can express. However, expressivity is always increased at the cost

of computational complexity of reasoning.

Ontology languages had been created before the Semantic Web concept was

introduced. CycL [47] is a formal language developed for the Cyc project. It’s aim is

expressing a large knowledge base of commonsense knowledge. The language is based on

first-order logic predicate calculus with features allowing to use nonmonotonic reasoning

and the information in CycL is organized using frames. KIF (Knowledge Interchange

Format) [26] is a language for the interchange of knowledge between heterogeneous

software systems, whereas it was not originally intended to be an internal representation

of knowledge. Ontolingua [28] is a representation language based on KIF with the

addition of a frame ontology. An ontology created in Ontolingua is defined by relations,

classes, functions, individuals and axioms.

The contemporary ontology languages are primarily using RDF (Resource

Description Framework) [49] as the underlying data model. RDF is a very general data

model for describing resources and relationships between them. The RDF data model is

build with statements in the form of object-attribute-value triples. The primary syntax

of RDF is based on XML [14]. However, other syntaxes could be used to express the

RDF data model.

RDF schema [19] specializes RDF for describing properties and classes of RDF

resources. It provides the means to express hierarchies of these classes and properties.

RDF Schema explicitly defines the “is subclass of” relationship, which does not exist

in RDF.

OWL (Web Ontology Language) [52] is semantically and syntactically a further

specialization of RDF. It provides an expressive language for describing relationships

between classes and individuals. OWL is a proposal of the W3C Web Ontology Working

Group and is based on DAML+OIL [22]. DAML+OIL in turn comes from a joint

initiative combining two earlier ontology languages, which are: DAML-ONT [51] and

OIL [23].

Apart from the knowledge representation languages, the Semantic Web also needs

a query language. Similarly to SQL for databases, SPARQL is a currently proposed by

24

2.1. Semantic Web

W3C query language for RDF [58]. For a survey of different RDF query languages, see

[30]. SPARQL is a graph-matching query language. A query forms a pattern, which is

matched against the knowledge base. Since SPARQL deals with the general RDF data

model, it is not very well suited for OWL, and especially OWL DL, which is strictly

based on description logics. Thus, a subset of SPARQL, named SPARQL-DL, has been

proposed [69]. SPARQL-DL can be implemented to make use of existing DL reasoners.

Despite the fact that ontology languages are based on logic, they are usually

equivalent to a less expressive subset of first-order logic (FOL). This is caused by

the necessity to choose between the expressive power and computational efficiency of

knowledge representation languages. Brachman and Levesque [18] argue that the more

expressive a representation language is, the more it is difficult to perform inferences.

An important property of logic-based ontology languages is that a trace of the inference

steps can be provided as an explanation of the result of reasoning.

2.1.3 Description Logic

Description logics (DLs) [10] are a family of knowledge representation formalisms. They

are descendants of semantic networks [76] and the KL-ONE system [67]. Knowledge

in DLs is represented by defining concepts from a selected domain, which comprise

a terminology, and using these concepts for classifying objects and describing their

properties. Description logics differ from earlier knowledge representation methods,

such as semantic networks because they have a formalised semantics based on first-order

logic. This property of DLs enables reasoning using logic-based methods.

A knowledge base expressed in description logic consists of two components. The

terminology (Tbox) is a set of axioms defining and describing concepts and roles.

Complex concepts and roles are defined using atomic ones. The assertional component

(Abox) contains facts about objects expressed using concepts and roles. For example,

using description logic the concepts Penguin and Bird can be created and it can be

stated that all penguins are birds.

One of the simplest and much studied description logic is ALC [66], which provides

the basic constructors for creating concept descriptions – conjunction, disjunction,

25

Chapter 2. Related work

complement, universal and existential quantifiers. More expressive description logic

languages can be obtained by extending ALC and are named using letters that

indicate the extensions included in the description logic. ALC with transitional

roles is often denoted by S. Other extensions include role hierarchy – H (e.g.

hasDaughter v hasChild), nominals (singleton classes) – O (e.g. {POLAND}), inverse

roles – I (e.g. hasChild is the inverse of isChildOf), quantified number restrictions – Q

(e.g. ≥2 hasChild.Woman) and number restrictions – N (e.g. ≤1 hasChild) . The DL

language SHOIN is the basis of the Web Ontology Language (OWL).

Description logics have a well understood base of reasoning algorithms. The most

commonly used algorithms are based on semantic tableaux. These algorithms are

implemented in reasoners such as Pellet [70] and FaCT++ [74]. A different approach

to DL reasoning is taken in the KAON2 inference engine [40], where the knowledge

base is first transformed into a disjunctive logic program.

The statements in description logic are interpreted as universal statements, which

do not allow exceptions. This allows to automatically classify objects by deducing all

concepts they belong to. However, this formalism does not allow to state assumptions.

For instance, we would like to assume that typically birds fly, unless we have contrary

information about a specific individual to conclude otherwise. Thus, a statement that

Bird is a subconcept of Flies would lead to an incorrect conclusion that penguins (which

are birds) can fly. Explicitly stating that penguins cannot fly would in this case be

inconsistent with the information that birds can fly. To deal with such situations, a

nonmonotonic reasoning method, such as default logic, should be taken into account.

2.1.4 OWL

The main focus of this work is on the Web Ontology Language. OWL is based on

RDF Schema and uses its XML syntax. However, OWL adds several features that

increase the expressive power of OWL over RDF Schema. Examples of such features

include local scopes of properties (Cows eat only plants), disjointness of classes (Male

disjoint-with Female), boolean combinations of classes (A person is male of female),

26

2.1. Semantic Web

cardinality restrictions (A person has exactly two parents) and special characteristics

of properties (eg. inverse or transitive properties).

The W3C Web Ontology Working Group defined three sublanguages of OWL,

each having a different proportion between the expressive power and computational

complexity.

OWL Full uses all possible OWL primitives. It is entirely compatible with RDF,

meaning that any valid RDF document is also a valid OWL Full document. The

disadvantage of such an expressive language is that it is actually undecidable, which

means that it is infeasible to build a complete reasoner for OWL Full.

OWL DL is a sublanguage of OWL Full which is restricted to correspond to a

well-defined description logic. The advantage of OWL DL is that efficient reasoning

is possible, as complete DL reasoners already exist. However, these restrictions cause

the loss of full compatibility with RDF. Any valid OWL DL document is nonetheless

a valid RDF document.

OWL Lite is in turn a sublanguage of OWL DL. The language has further

restrictions on the constructs that can be used. The restricted expressivity makes

the language easier to understand and easier to implement.

Since OWL is based on description logics, it uses the open world assumption and

the non-unique-name assumption. The open world assumption is addressed by adding

defaults to description logics and allowing to create rules which simulate the closed

world assumption for selected concepts.

2.1.5 Open and closed world assumptions

The open and closed world assuptions show how to deal with incomplete knowledge.

The problem is whether to permit statements, which have an undefined truth value, or

to always presume that what is not known is false.

The closed world assumption is used in databases and in the Prolog programming

language. It states that a fact is assumed to be false if it cannot be proved from the

existing data. This form of reasoning is useful as it allows to draw inferences in the

absence of explicit information.

27

Chapter 2. Related work

Example 2.1. Consider a knowledge base with only two statements:

Teacher(JOHN); Teacher(MARY)

If the closed world assumption is used, we conclude that there are only two teachers,

and an example query Teacher(FRANK) gives the answer False.

The closed world assumption is, however, inappropriate in a setting, where it is

known that information can be incomplete. The Semantic Web is such an environment

with factors such as the large size and the fact that information can change dynamically.

Thus, very often it cannot be stated whether complete information is already gathered

and the assumption that unknown facts must be false cannot be used.

The open world assumption allows only to draw conclusions from the information

that is explicitly given. In Example 2.1 the query Teacher(FRANK) will give an

undefined answer, as it is not explicitly stated whether Frank is a teacher or not.

Although the Semantic Web needs to rely on the open world assumption, sometimes

it would be beneficial to be able to state that the possessed information is actually

complete. Let us consider the knowledge base from Example 2.1. In description

logic one can define the completeness of information by using nominals, i.e. listing

all members of a concept.

Teacher ≡ {JOHN,MARY}

However, this only works for simple cases and this method is very verbose.

Heflin and Muñoz-Avila [31] propose to include the notion of a local closed

world (LCW) in a description logic language. LCW allows to state that the closed

world assumption should be used for a specific concept. For example, a statement

LCW (Teacher(x)) could be used to say that if an individual x cannot be proved to be

a teacher, then it should be inferred that x is not a teacher.

Default logic (see Section 2.3 and Section 3.3) provides a method of introducing

a form of the closed world assumption into knowledge bases, which natively work

with open worlds. The default for the given example would state that “Unless proved

otherwise, x is not a teacher”. The notion of local closed world can be expressed using

28

2.2. Distributed Environment

default logic by substituting each LCW (C) statement with a prerequisite-free normal

default :¬C
¬C , which expresses the closed world assumption.

2.2 Distributed Environment

The Semantic Web is a distributed environment with many entities playing different

roles. Knowledge in this environment changes dynamically and cannot be centrally

controlled. The Internet provides good grounds for running autonomous agents, which

perform tasks on behalf of their users.

2.2.1 Multi-Agent Systems

Agents always exist in the context of multi-agent systems, in which they can

communicate with each other. Many definitions of an agent can be found in literature

[25]. In this work we will use the following definition: “Agents are pieces of software

that work autonomously and proactively” [6]. The agent’s autonomy can be understood

as the lack of external control over the agent. It can be given tasks by the user but

the agent makes decisions and performs actions based on its own internal state. The

proactiveness of agents manifests itself in the fact that agents do not wait for requests

but act when they believe it is necessary. Personal agents act on behalf of the user

and perform various tasks such as seeking and comparing information. Agents can

communicate with other agents while performing their tasks.

Multi-agent systems emerged from the field of distributed artificial intelligence

(DAI), which is concerned with decomposing and distributing complex artificial

intelligence tasks [72]. In MAS however, each agent can have its own goal it pursues.

Agents can even have contradictory goals such as in a multi-agent marketplace [42],

where each agent negotiates with other agents to achieve the best price.

Agents in the Semantic Web use metadata of Web resources combined with

ontologies, which provide the context and meaning of descriptions. Ontologies enable

the agent to interpret obtained information and communicate with other agents. For

29

Chapter 2. Related work

the agents to work in the Semantic Web environments, agent communication languages

and distributed reasoning algorithms have to be developed.

Taking into account the language for interaction between agents, two layers can

be distinguished. Firstly, the communication language is responsible for formulating

messages and allows to include information such as the sender, recipient or the type of

message. Secondly, the actual body of the message is expressed in a content language.

The content can carry a query, an answer or any information, which can be expressed

in the content language. The two most commonly used communication languages

are FIPA-ACL (specified by the Foundation for Intelligent Physical Agents) [1] and

KQML (Knowledge Query and Manipulation Language) [24]. However, there is no

standard content language for agent communication. In the Semantic Web context,

an ontology language such as OWL can be used to express information and SPARQL

could be used to form queries. These two languages have been chosen in the AgentOWL

implementation of Semantic Web agents [46]. A special case of the content language

can be the natural language, nevertheless it is not suitable for automatic processing.

In the Semantic Web environment there is an important issue that arises when

trying to build a Web-wide agent system. Namely, since the knowledge in the Web is

distributed, each agent can use a different ontology for its own purpose and finding a

common language with another agent may not be a trivial task.

2.2.2 Knowledge Distribution

Knowledge bases provide the functionality of reasoning in order to derive new facts

from existing information and to allow complex queries to be answered. In distributed

environments, such as the Internet, it can often be found that relevant knowledge

needed for reasoning has to be obtained from several distributed sources. It is the task

of distributed reasoning to combine the knowledge that is scattered among the peers

in a distributed system in order to reach appropriate conclusions.

Knowledge can become distributed in two main ways. Firstly, large knowledge

bases can be split into smaller modules, which is done in order to increase reasoning

performance by enabling to run parallel reasoning procedures on each smaller part of

30

2.2. Distributed Environment

the whole knowledge base. Works such as [3] show how to divide an initial knowledge

base into smaller partitions in order to run local reasoners on each of the partitions.

This approach has the advantage of the ability to divide the knowledge in a predictable

way such that the performance gain is maximized. For instance, building a stratified

knowledge base is known to increase reasoning performance [20]. Secondly, knowledge

can already exist in a distributed environment, for example created and shared by

different entities. In this case, to acquire sought information it may be required to

contact remote entities which can answer queries. The approach to reasoning in this

case is different, as one does not control the remote knowledge bases and one cannot

specify how the knowledge is divided. In this scenario, performance gain cannot

be guaranteed. The work [2] deals with an already existing network of peers, each

containing its local knowledge base. The global knowledge, understood as the sum of

all local knowledge bases, is unknown. Due to the possibly large size, the dynamic

nature of the network and also privacy constraints, it would be impractical or even

impossible to gather all accessible knowledge in one place.

Both of the above scenarios exist in the context of the Semantic Web. Works such

as [27] show methods of dividing large ontologies, such as the eClassOWL product and

services classification [32] or the SNOMED medical ontology [71]. The task of splitting

a large ontology into a set of smaller ones, which are not necessarily disjoint. The aim

of this task is to improve the computational complexity of reasoning and to enable

running parallel reasoning procedures on each module separately.

On the other hand, in the Web environment the knowledge is inherently distributed

and there is no central repository of information. The current World Wide Web already

contains hundreds of ontologies, each used for a specific purpose. However, success has

yet to be achieved to actually use ontologies to enable communication between systems,

which use slightly different ontologies. This task requires a standardized method for

mapping ontology vocabularies.

Multiple distributed ontologies require a method for interoperability. Different

entities create their own ontologies which suit their needs, often reusing parts of

other ontologies. However, ontologies created by different people can have overlapping

31

Chapter 2. Related work

domains. This does not mean that these ontologies contain concepts which have

identical meanings. Even if two ontologies include concepts with the same names,

these concepts can express slightly different meanings.

Standardization can be viewed as an attempt to solve the problem of refering to the

same concepts by different ontologies. If two ontologies refer to animals, they should

link to an appropriate standard ontology of the animal domain. Standardization is

undoubtedly necessary in the process of building the Semantic Web. Since the goal of

using ontologies is to provide a common vocabulary for different systems, standardized

ontologies have to be created and adopted by the peers, who want to communicate with

each other. Nevertheless, it is inevitable that new ontologies will be created by different

entities that will form their own vocabularies. For example each camera manufacturer

has a different name for its image stabilization system (Canon: Image Stabilizer, Nikon:

Vibration Reduction, Pentax: Shake Reduction).

The basic method for joining ontologies included in the OWL language is the

owl:import statement. However, this method of combining ontologies, though simple,

has serious drawbacks. The owl:import statement causes all imported ontologies to

be downloaded as a whole and loaded into the local reasoner. What is more, if the

imported ontologies also have dependencies, then every one of the dependent ontologies

is recursively added to the local ontology in order to perform a reasoning task on a

combined global knowledge base. In simple cases this might be an acceptable solution

but it does not scale very well. Apart from that, it is often required to actually reuse

only several terms from the imported ontology, so it makes it even more inefficient to

load the remote ontology entirely, especially when there are many unnecessary axioms.

Another drawback of ontology importing is the lack of methods for ensuring privacy

of local knowledge. The only option is to share an entire ontology without having an

option to selectively publish only its parts and requiring authorization for restricted

knowledge.

One solution to this problem is to import only those parts of a remote ontology that

are actually going to be used. Grau et al. [27] propose an algorithm for determining

and retrieving the fragment of an ontology that is relevant for a given concept.

32

2.3. Default Logic

In a distributed environment such as a multi-agent system, each peer can have

its own local knowledge. By means of exchanging information the peers can perform

inferences involving additional knowledge from other sources. An agent will often have

its own domain of expertise and it will contact other agents in order to gather knowledge

from other domains. In fact, different knowledge bases can have overlapping content.

The common concepts can be used as the communication language between two peers.

Distributed Description Logic

Distributed Description Logic (DDL) [17] is an extension to the Description Logic

formalism, which provides semantic mappings between ontologies via bridge rules. A

bridge rule connects a concept from one ontology with a concept from another ontology,

stating that one is subsumed by the other. This means that one ontology refers

only to selected concepts from other ontologies instead of including all axioms from

remote sources. Such semantic mapping makes it possible to construct algorithms for

distributed reasoning, where local reasoning processes are combined to answer a query.

Moreover, since a peer does not expose its ontologies publicly but only offers a reasoning

service, it is possible to implement privacy ensuring methods on the concept level.

Package-based Description Logic

Bao et al. [13] propose a formalism named Package-based description logic (P-DL),

which supports contextual reuse of knowledge from multiple DL knowledge bases. This

formalism is based on the SHOIQ DL language. Each ontology is viewed as a package

connected with a local domain. Every concept, role and individual name have their

home package, which is the source of this name. The authors restrict negation (¬) and

the top concept (>) to one module, denoting them as ¬i and >i.

2.3 Default Logic

Many knowledge representation formalisms, including description logic and ontologies,

suffer the lack of support for reasoning with incomplete or inconsistent information.

33

Chapter 2. Related work

Very often it is actually impossible to obtain complete information in a domain being

described. First-order logic and in consequence description logics reasoning follow

the open world assumption (OWA). This means that if some information is not

explicitly expressed or derivable from the facts, there is no other mechanism to use this

information. In contrast, the closed world assumption (CWA) says that if something

cannot be proved, it is taken to be false.

In order to be able to reason with incomplete data, the logic used to

represent knowledge has to be augmented by a nonmonotonic reasoning mechanism.

Such mechanisms include negation-as-failure [21] used for example in Prolog [54],

circumscription [50], Nute’s defeasible logic [55] and Reiter’s default logic [59, 57].

All these formalisms allow nonmonotonic reasoning, which provides the possibility

to remove inferences by adding new information to the knowledge base. A default

in Reiter’s default logic can express the notion that “Typically, if α, then β”, which

suggests that there can exist exceptions to the rule that usually will be applicable.

The formalism of default logic asusmes that there can be many worlds, called

extensions, containing contradictory results of reasoning. There has been significant

effort to identify one preferred extension in order to give only one specific answer to a

query. Ryżko [62] proposes prioritizing defaults based on a confidence measure, which

is learnt by a multi-agent system. Katz and Golbeck [44] calculate priority values of

defaults based on trust in social networks. In this work, however, we address finding

all extensions of a default theory. Nonetheless, it can be extended to utilize one of the

formalisms to prefer extensions.

2.3.1 Distributed Default Logic

Distributed reasoning with defaults is introduced in [62] and further developed in [64].

This approach utilizes environmental knowledge, which is added to the defaults in the

knowledge base and forming default templates. This work does not take into account

the problems occurring in the Semantic Web, in which the distribution of knowledge

cannot be controlled and particularly stratification of the modules is not possible.

Moreover, agents can use different vocabularies in their local knowledge bases.

34

2.3. Default Logic

2.3.2 Embedding Defaults in Description Logic

For default logic to be applicable to the Semantic Web environment, it has to be

tied to a knowledge representation language used in this context. The OWL language

and description logics have dominated the Semantic Web arena and there have been

attempts to introduce nonmonotonic reasoning to the DL formalism. Antoniou [5, 7]

proposed to integrate defeasible logic into description logic. These works introduce

defeasible rules, which can be overridden by strict rules.

A different example of introducing defeasible reasoning in description logics is

presented by Heymans and Vermeir [33]. This work proposes to include a preference

order on the axioms of a knowledge base. With such a strict partial order, some axioms

can override other less preferred ones.

Baader and Hollunder [12] propose a formalism, which is used in this work, to

embed default logic into description logic. A more detailed characterization of their

results is presented in Section 3.4. Kolovski [45] presents an implementation of the

integration of defaults into the OWL language. This work, however, does not take into

account distributed reasoning.

35

Chapter 3

Basic Concepts and Definitions

3.1 Description Logics

Description logics (DLs) are a family of knowledge representation formalisms, which

are based on first-order logic. A DL knowledge base consists of two components.

The terminology (Tbox) is a set of axioms defining and describing concepts and roles.

Complex concepts and roles are defined using atomic ones. The assertional component

(Abox) contains facts about objects expressed using concepts and roles.

One of the simplest and much studied description logic is ALC [66]. This language

provides a set of constructors for defining new concepts shown in Table 3.1. The table

also shows the analogy to first-order logic as concepts can be interpreted as unary

predicates, roles as binary predicates and individuals as constants.

3.1.1 Definitions

A formal semantics is defined by considering interpretations I consisting of a domain

∆I and an interpretation function assigning to every atomic concept A a set AI ⊆ ∆I

and to every atomic role R a binary relation RI ⊆ ∆I ×∆I . The interpretation of the

DL constructs are defined as follows:

Chapter 3. Basic Concepts and Definitions

>I = ∆I

⊥I = ∅

(¬C)I = ∆I \ CI

(C uD)I = CI ∩DI

(C tD)I = CI ∪DI

(∀R.C)I = {a ∈ ∆I | ∀b(a, b) ∈ RI → b ∈ CI}

(∃R.C)I = {a ∈ ∆I | ∃b(a, b) ∈ RI ∧ b ∈ CI}

The terminology is defined using the concept subsumption relation (v) and the

equivalence relation (≡). The semantics of these relations is as follows. Two concepts

C, D are equivalent (C ≡ D) if CI = DI for all interpretations. A concept C is

subsumed by a concept D (C v D) if CI ⊆ DI for all interpretations.

The TBox is a set of general concept inclusions (GCI) in the form C v D and

concept definitions (A ≡ C). Concepts can be atomic or complex. Complex concepts

are built using DL constructors (see Table 3.1). It is assumed that only one definition

of a concept is allowed and definitions are acyclic, which means that a concept is never

directly or indirectly used in its own definition.

first-order logic
constructor analogy description

A A(x) concept name
R R(x, y) role name
> True top
⊥ False bottom

C uD C(x) ∧D(x) conjunction
C tD C(x) ∨D(x) disjunction
¬C ¬C(x) complement*
∀R.C ∀y R(x, y)⇒ C(y) universal quantifier
∃R.C ∃y R(x, y) ∧ C(y) existential quantifier

Table 3.1: ALC constructors. C, D – concepts.

38

3.1. Description Logics

Example description logic constructs (TBox) are as follows:

Parent ≡ Father tMother

Student v Person u ∃attends.University

Example ABox assertions:

Father(JOHN)

attends(JOHN,WUT)

The semantics of a DL knowledge base in the form of a TBox and an ABox makes

it equivalent to a set of first-order logic axioms. Thus, it contains implicit knowledge

that can be obtained through inferences. The primary inference problems include

consistency checking. This is an important inference task, as all other reasoning tasks

can be reduced to consistency checking. The main inference problems concerning

concepts, all of which can be reduced to subsumption, are:

• subsumption (C v D)

• satisfiability (C 6v ⊥)

• equivalence (C v D and D v C)

• disjointness (C uD v ⊥)

The subsumption problem (C v D) can in turn be reduced to concept satisfiability by

testing whether the concept C u ¬D is unsatisfiable.

Apart from TBox inferences, there is also an important inference problem for the

ABox, which is instance checking – checking whether a given individual is an instance

of a given concept. It can be shown that an individual a is an instance of concept

C, which is denoted as C(a), if adding the assertion ¬C(a) makes the knowledge base

inconsistent.

39

Chapter 3. Basic Concepts and Definitions

A concept is in negation normal form (NNF) if negation (¬) only appears directly in

front of atomic concepts. It is shown in [10] that for each complex concept description

an equivalent NNF exists.

3.1.2 Tableau reasoning algorithm

A tableau algorithm for description logics was first presented by Schmidt-Schauß and

Smolka [66] for the ALC DL. This algorithm has been further extended to more

expressive DL languages [34, 8, 11, 9, 65, 38, 29, 39].

The tableau algorithm for TBox inferences reduces the presented query to concept

satisfiability. The algorithm works by trying to construct a finite interpretation I such

that for the tested concept C, CI 6= ∅. An individual a is created, which belongs

to the concept C, i.e. a ∈ CI . If C is a complex description, rules are applied to

break it down into assertions on atomic concepts. If no more rules can be applied and

contradictory statements A(x) and ¬A(x) for some x are encountered, then concept

C is found unsatisfiable. If a disjunction of two concepts A t B(x) is analyzed, the

algorithm has to check both possibilities A(x) and B(x) independently. If at least one

path does not lead to a contradiction, then the queried concept is said to be satisfiable.

The tableau algorithm works on a data structure, called a tableau, which is a set of

ABox assertions in the form C(x) and R(x, y), where C is a concept description, R is

a role name and x and y are individual names. To test the satisfiability of the concept

C, the algorithm starts with the ABox A′ = {C(a)}, where a is a new individual

name. The procedure applies transformation rules to the ABox until no more rules

can be applied or the ABox contains an obvious contradiction, which is called a clash.

In the first case, A0 is consistent and C is satisfiable, whereas in the second case

A0 is inconsistent and C is unsatisfiable. The transformation rule, which applies

to the disjunction of concepts is non-deterministic, meaning that the input ABox is

transformed into a set of ABoxes with the property that the input ABox is consistent

if and only if at least one of the output ABoxes is consistent. This leads to maintaining

a set of ABoxes S = {A1, . . . ,An} instead of only one. S is said to be consistent if and

only if there exists some i such that Ai is consistent.

40

3.2. Distributed Description Logic

The →u-rule:
If A contains (C uD)(x), but it does not contain both C(x) and D(x),
then A′ = A ∪ {C(x), D(x)}.

The →t-rule:
If A contains (C tD)(x), but neither C(x) nor D(x),
then A′ = A ∪ {C(x)}, A′′ = A ∪ {D(x)}.

The →∃-rule:
If A contains (∃R.C)(x), but there is no individual name z such that R(x, z) and
C(z) are in A ,
then A′ = A ∪ {R(x, y), C(y)}, where y is an individual name not occurring in A.

The →∀-rule:
If A contains (∀R.C)(x) and R(x, y), but it does not contain C(y),
then A′ = A ∪ {C(y)}.

Figure 3.1: Tableau transformation rules

The algorithm starts with S containing the starting ABox A0. In each step, one

element A ∈ S is taken and a rule of Figure 3.1 is applied obtaining one (A′) or two

(A′,A′′) ABoxes. A is then replaced by A′ or A′ and A′′. The algorithm finishes if

there is some A ∈ S for which no transformation rules can be applied or all ABoxes in

S contain clashes.

3.2 Distributed Description Logic

Let I be a set of indexes and we have a set of description logic knowledge bases KBi

for i ∈ I. The set Bij contains bridge rules Bij. Bridge rules in Bij represent the point

of view of KBj and are only used by knowledge base KBj. Note that bridge rules Bji
may be different from Bij. Let us denote concepts from knowledge base KBi as i : C.

Definition 3.1. A bridge rule Bij is in one of the forms:

i : A
v−−−→ j : G

i : A
w−−−→ j : G

i : A
≡−−−→ j : G

41

Chapter 3. Basic Concepts and Definitions

where i, j ∈ I and A and G are concepts. The last bridge rule is defined as the

conjunction of the first two rules.

To fully define distributed description logic the individual correspondence relation

needs to be introduced.

Definition 3.2. Individual correspondence is an expression i : x 7→ j : y, where x

is an individual in KBi and y is an individual in KBj.

Definition 3.3. A DDL knowledge base KB = {KBi} for i ∈ I is a set of local

knowledge bases KBi = 〈Ti, Ai, Bi〉 where 〈Ti, Ai〉 is a DL knowledge base and Bi is a

set of bridge rules Bji for different values of j ∈ I (i 6= j).

The formal semantics of DDL is provided using local interpretations of individual

DL knowledge bases, as defined in Section 3.1.

A distributed interpretation I = 〈{Ii}i∈I , r〉 of KB consists of interpretations Ii for

KBi over domain ∆Ii and a function r associating a binary relation rij ⊆ ∆Ii ×∆Ij to

each i, j ∈ I.

3.3 Default Logic

Default logic has been introduced by Reiter [59] as an approach to commonsense

reasoning. It can be used to deal with the inability to fully describe the world and

to provide more concise representations of knowledge due to the form of specifying

exceptions to defaults. The notion of a default is introduced, which acts as an inference

rule on the current set of beliefs.

3.3.1 Definitions

The following definitions present the formalism of default logic as it was defined by

Reiter.

42

3.3. Default Logic

Definition 3.4. A default is in the form:

α : β

γ

where α, β and γ are well-formed formulae. α is the prerequisite, β is the

justification and γ is the consequent.

The default can be applied and the consequent inferred if the prerequisite can be

proved and the justification is consistent with the current knowledge.

The original default logic proposed by Reiter allowed multiple justifications written

as α : β1,...,βn

γ
. Here, we limit the number of defaults to one, following most further

works on default logic. In this case, multiple justifications can be obtained by joining

them with conjunction, i.e. α : β1∧...∧βn

γ
.

For a default d, let Pre(d), Jus(d) and Con(d) denote the formulae occurring in

the prerequisite, justification and consequent, respectively, of the default d.

Similarly, for a set of defaults D, let:

PRE(D) = {Pre(d) : d ∈ D}

JUS(D) = {Jus(d) : d ∈ D}

CON(D) = {Con(d) : d ∈ D}

The following definition defines defaults of special forms, that will be of interest in

our considerations.

Definition 3.5. We define two forms of defaults:

A normal default is in the form

α : γ

γ

A semi-normal default is in the form

α : β ∧ γ
γ

43

Chapter 3. Basic Concepts and Definitions

A normal default is usually read as “Typically, if α then β”.

We say that a default is closed if it contains no free variables.

Definition 3.6. A default theory is a pair ∆ = 〈D,W 〉, where W is a set of

first-order logic formulae creating a world description and D is a set of defaults. The

default theory is closed if it contains only closed defaults.

The consequences of a default theory are defined using the notion of an extension,

which is a set of deductively closed formulae. In general, a default theory can have more

than one extension or even no extensions. However, a default theory consisting only of

normal defaults (normal default theory) guarantees having at least one extension. The

following definition shows a non-deterministic iterative process of obtaining extensions

of a default theory. In each step a default is used to add the consequent to the resulting

set of formulae. An extension is defined by the fixed point of this process. By Th(E)

we denote the deductive closure of a set of formulae E.

Definition 3.7. Let E be a set of closed formulae, and 〈D,W 〉 be a closed default

theory. Let

E0 = W

Ei+1 = Ei ∪
{
γ | α : β

γ
∈ D,α ∈ Th(Ei) and β 6∈ Th(E)

}
Th(E) is an extension of 〈D,W 〉 iff

Th(E) =
∞⋃
i=0

Th(Ei)

Different extensions can be generated depending on the order the defaults are

applied. By ext(∆) we denote the set of all extensions of the default theory ∆.

44

3.3. Default Logic

Example 3.1. Consider a default theory ∆ = 〈D,W 〉, where

D =

{
q : p

p
,
r : ¬p
¬p

}
W = {n→ q, n→ r, n}

This represents the classic Nixon diamond problem, where n – Nixon, q – Quaker,

r – Republican and p – Pacifist. This theory has two extensions E1 = {n, q, r, p} and

E2 = {n, q, r,¬p}. The extensions provide two views of the world, where Nixon is a

pacifist in one and not in the other.

The consequences of a default theory can be defined by employing skeptical or

credulous reasoning.

Definition 3.8. Given the default theory ∆, a formula φ is a consequence of skeptical

reasoning in ∆ if it is in at least one extension, i.e. ∃E∈ext(∆)φ ∈ E. A formula

φ is a consequence of credulous reasoning in ∆ if it is in all extensions, i.e.

∀E∈ext(∆)φ ∈ E.

In Example 3.1, both p and ¬p are consequences of credulous reasoning, however

neither p nor ¬p is a consequence of skeptical reasoning.

Definition 3.9. The set of generating defaults for an extension E of theory ∆ =

〈D,W 〉 is the set

GD(E,∆) = {α : β/γ ∈ D|α ∈ Th(E) and ¬β 6∈ Th(E)}

Each extension has its unique set of generating defaults. The extensions of the

theory from Example 3.1 have the following generating defaults:

GD(E1,∆) =

{
q : p

p

}
GD(E2,∆) =

{
r : ¬p
¬p

}

45

Chapter 3. Basic Concepts and Definitions

During the iteration process from Definition 3.7 only consequences of defaults are

added to the extensions allowing to express any extension in the form

E = Th(W ∪ CON(GD(E,∆)))

This relation is used in the reasoning algorithm. Having found the sets of generating

defaults for all extensions, the consequences of the generating defaults combined with

W constitute the resulting extension.

3.3.2 Default Reasoning

The primary task of default reasoning is computing the extensions of a default

theory. Once the extensions are obtained, it is easy to make credulous or skeptical

inferencs. Only closed defaults will be considered, as explained in the next section about

embedding defaults into description logic. In this section, a method for computing the

extensions proposed by Risch and Schwind [61] will be described. Other methods of

finding default extensions include directly applying the definition of an extension, which

results in a very inefficient exponential complexity. A method proposed by Junker and

Konolige [41] should also be mentioned, which translates a default theory into a Truth

Maintanance Network.

The algorithm by Risch and Schwind is based on the definition of a grounded set of

defaults and a theorem describing the set of generating defaults of an extension. The

result of the algorithm is the set of extensions expressed as their sets of generating

defaults.

Definition 3.10. Let W be a set of closed formulae, and D be a set of closed defaults.

Let

D0 = ∅

Di+1 = Di ∪
{
d =

α : β

γ
| d ∈ D and W ∪ CON(Di) |= α

}
D is grounded in W iff

D =
∞⋃
i=0

Di

46

3.4. Description Logic with Defaults

This definition can be directly used as a procedure for finding grounded sets of

defaults. Moreover, if D is not grounded, then
⋃∞
i=0Di is the largest subset of D that

is grounded in W .

Theorem 3.1. (Risch and Schwind [61]) Let ∆ = 〈D,W 〉 be a closed default theory.

A subset D̂ of D is a set of generating defaults of an extension of ∆ iff the following

two conditions hold:

1. D̂ is grounded in W

2. For all d = α:β
γ
∈ D we have:

(a) d ∈ D̂ iff W ∪ CON(D̂) |= α, and

(b) W ∪ CON(D̂) 6|= ¬β

The theorem constitutes a test of whether a subset D̂ of D is a set of generating

defaults of an extension of the default theory ∆ = 〈D,W 〉. Without loss of generality,

we assume that W is consistent. Algorithm 3.1 computes the generating sets of defaults

of all extensions of ∆. Let D0 be the largest subset of D that is grounded in W and

D1, . . . , Dn be all maximal subsets of D0 such that W ∪ CON(Di) is consistent. The

sets Di have the property that each set of generating defaults is a subset of one of

the Di.

Algorithm 3.1: allExtensions

Input: Theory ∆ = 〈D,W 〉
begin

result ← ∅;
foreach maximal subset D′ of D such that W ∪ CON(D′) is consistent do

result ← result ∪ removeDefaults(∆, D′);

return result;
end

3.4 Description Logic with Defaults

A description logics knowledge base consists of only universal statements, which do not

allow exceptions. This allows the reasoning system to unambiguously assign individuals

47

Chapter 3. Basic Concepts and Definitions

Algorithm 3.2: removeDefaults

Input: Theory ∆ = 〈D,W 〉
Input: Potential superset of a generating set of defaults D′

begin
D0 ← largest subset of D′ that is grounded in W ;
if there exists d = α:β

γ
∈ D0 such that W ∪ CON(D0) |= ¬Jus(d) then

result ← removeDefaults(∆, D0 \ d);
foreach maximal subset D′ of D0 such that

d ∈ D′ and W ∪ CON(D′) 6|= Jus(d) do
result ← result ∪ removeDefaults(∆, D′) ;

return result;

else if for each α:β
γ
∈ D \D0 either

W ∪ CON(D0) 6|= α or
W ∪ CON(D0) |= ¬β then

return D0;

return ∅;
end

to concepts. However, this method does not provide means for commonsense reasoning,

where some assumptions can eventually be shown to be false. The application of the

results achieved in default logic can provide a method for commonsense reasoning

without losing important features of description logics. Reiter’s default logic uses

first-order logic as the base language and since description logics are decidable

subclasses of FOL, they can be extended with the notion of defaults using the original

semantics. Baader and Hollunder [12] show how defaults can be embedded into

description logics.

Defaults for description logics are formed analogously to the original defaults syntax.

Here, the formulas for the prerequisite, justification and conclusion are replaced by DL

concepts. A default is in the form
A : B

C

where A, B and C are concept expressions. This default is equivalent to the default in

which concepts are expressed as unary predicates:

A(x) : B(x)

C(x)

48

3.4. Description Logic with Defaults

The default expresses that it can be inferred that x is an instance of the concept C

if x is an instance of A and it is consistent to assume that x is an instance of B.

Embedding defaults in description logics is not as straightforward as it may seem.

The problem is with treatment of open defaults by Skolemization. An ALC knowledge

base is undecidable, unless we consider only closed defaults. This means that defaults

can only be applied to named individuals which already exist in the knowledge base.

The following example shows the application of defaults only to individuals that

explicitly appear in the ABox.

Example 3.2. Consider a knowledge base consisting of a fact that Tom has a child

that is a doctor and that typically doctors are rich.

Doctor : Rich

Rich
(∃hasChild.Doctor)(TOM)

One might expect that it could be inferred that Tom has a child that is rich.

However, the default cannot be applied to Tom’s child, which is an implicit individual

and does not exist int the ABox. Thus, the conclusion (∃hasChild.Rich)(TOM) cannot

be reached.

A normal default in the form
A : B

B
can be seen as a weaker form of subsumption,

such that permits exceptions. The default
A : >
B

is also weaker than the axiom A v B

because although there is no possibility of specifying exceptions, it does not imply the

contrapositive ¬B v ¬A.

Definition 3.11. A DLD knowledge base is a triple KB = 〈D,T,A〉 where T is a

TBox, A is an ABox and D is a set of defaults.

Because of problems caused by Skolemization, which are described in [12], restricted

semantics has to be used. Defaults are only applied to individuals that exist in the

ABox forming a finite set of closed defaults.

49

Chapter 4

Distributed Description Logic with

Defaults

One of the main reasoning tasks in description logics is subsumption checking. The

query of whether a concept B subsumes a concept A is stated in description logic

language as A v B, which corresponds to the statement A(x) → B(x) in first-order

logic. Such queries are useful when reasoning in a distributed environment such as a

multi-agent system. For instance, the distributed reasoning algorithm presented in [68]

exchanges such queries between the peers in a Distributed Description Logic system.

In this setting the answer to a query can only be True or False.

Taking into account the integration of defaults into distributed reasoning, giving

such a definitive answer to a subsumption query does not always fully express the

knowledge contained in a remote knowledge base. Moreover, it can cause loss of

valuable information about the assumptions made during reasoning.

Exchanging knowledge between agents in an efficient way requires an agent to

answer a question as precisely as possible. When agent A asks agent B whether it

believes that formula φ is true, it expects a short answer whether φ is true or not.

However, when using defaults in the reasoning process, the answering agent might use

defaults while finding the answer to a question, which leads to making possibly wrong

assumptions. Giving a strict answer of True or False would make the asking agent

Chapter 4. Distributed Description Logic with Defaults

interpret the answer as “Agent B believes that φ is true (false)” while agent B only

assumes that φ is true (false).

In order to deal with such situations, we propose to include the assumptions made

during reasoning in the answers to queries. As these assumptions are contained in

defaults, we introduce the possibility to generate defaults as reasoning results, which

are ready to be communicated between agents. This is an extension of a preliminary

solution, which was introduced in [75].

4.1 Motivating example

Let us start with an example to illustrate the problems arising when default reasoning

is used in a distributed system.

Example 4.1. Let us consider an example DLD knowledge base which can be a part

of a distributed system.

d1 :
Bird : Flies

Flies
Stork v Bird Stork(SAM)

Goose v Bird Stork(TIM)

Penguin v Bird ¬Flies(TIM)

Penguin v ¬Flies Penguin(PAT)

Following queries to this knowledge base:

Case 1

Q1 : Flies(TIM)

A1 : False

The answer to this query is False because there is a straightforward fact in the

knowledge base stating that TIM cannot fly.

52

4.1. Motivating example

Case 2

Q2 : Flies(SAM)

A2 : True

A positive answer is returned by applying the default d1.

Case 3

Q4 : Goose v Flies

A4 : Undefined

Unlike the previous case, the default cannot be applied without a concrete individual

taken into account, because only closed defaults can be treated by the reasoning

algorithm. The lack of explicit knowledge stating that the concept Goose subsumes

the concept Flies prevents from giving a definitive answer.

Case 4

Q3 : Stork v Flies

A3 : Undefined

Similarly to the previous case, the answer cannot be unambiguously stated. If this

query is interpreted as “Do all storks fly?”, the answer could be negative, as TIM is

an example of a stork that does not fly. However, since the reasoner only operates on

explicit subsumption statements and does not analyze individuals, such a result cannot

be reached.

From this example we can see that the answers to queries Q2−Q4 lose information

which exists in the form of the default. In a distributed system, where many knowledge

bases may contain the sought information, making early assumptions can lead to hasty

conclusions. In these cases, answers with the following meanings could be expected:

53

Chapter 4. Distributed Description Logic with Defaults

A2′. It is assumed that SAM flies unless it is proved otherwise.

A3′. Typically, geese fly unless it is proved otherwise.

A4′. Typically, storks fly unless it is proved otherwise.

These statements can be expressed as the following defaults:

A2′ :
: Flies(SAM)

Flies(SAM)

A4′ :
Goose : Flies

Flies

A3′ :
Stork : Flies

Flies

These defaults, if provided as answers, give more information from the original

knowledge base than usual answers from the default theory. The rules form a concise

intermediate result and can be applied to achieve the final answer. In a distributed

environment, the triggering of these rules will occur on the side of the asking agent. Its

own knowledge gathered from other sources can be useful for providing justifications

for defaults or rejecting defaults based on provided exceptions to defaults.

As shown in [60], combining defaults and implication, although semantically correct,

can lead to conclusions that are not intended. For example, the statements Typically

adults are married and 18-year-olds are adults leads to a default Typically 18-year-olds

are married. However, such situations can be solved by adding additional defaults or

adding justifications to existing ones.

In a distributed environment, the fact that only closed defaults have to be used in

order to provide inferences is very limiting. This would imply that two agents sharing

knowledge have to have a common set of individuals and one agent would not be able

to ask another agent about a general relationship A(x) → B(x) without instantiating

the variable x.

In the next section we will discuss what transformations can be applied to defaults

while an agent prepares answers in the form of defaults.

54

4.2. Transforming defaults

4.2 Transforming defaults

When default logic is used in a distributed reasoning system, strict True or False

answers to queries may cause loss of information, as an agent may only assume that the

answer it gives is correct. Thus, an answer to an agent’s query should also carry the

information about assumptions made during the reasoning process. In default logic,

assumptions are expressed through the use of justifications in defaults. By tracing

the justifications of defaults that would be triggered when trying to prove a formula,

additional information can be collected and further used in answers to queries.

For a question in the form a→ b (or A v B in the language of description logics) the

answer can be given from the set {True, False, True with justifications j }, where

the last answer is interpreted as a default a:b∧j
b

and j is the set of justifications that

would be checked in defaults that would be applied to prove the queried formula a→ b.

Defaults in Reiter’s default logic are treated as inference rules on the same level of

reasoning as modus ponens or modus tollens. In the basic form the inference methods

do not permit creating new inference rules as the result of reasoning. Example 4.1

shows that returning defaults as the result of reasoning can be beneficial by making

answers to queries more informative. Only semi-normal defaults are considered because

using general defaults would lead to the possibility of generating defaults that would

make the theory inconsistent.

In order to be able to generate answers in the form of defaults, a mechanism is

needed to create new defaults based on the current knowledge base. Such rules must

have the property that when they are added to the set of defaults of a default theory,

the theory does not change with respect to the results of reasoning. In other words,

the set of extensions of the default theory ext(∆) must remain unchanged.

Definition 4.1. A default transformation t : ∆→ D produces a new default δ from

a default theory ∆ = 〈D,W 〉 and is denoted by ∆ |∼ δ.

We define a set of transformations which have very useful features and will be used

in the process of default reasoning. A general form of a transformation is 〈Dt, ft〉 |∼ δ,

where Dt ⊆ D, W |= ft, and δ is a new concluded default.

55

Chapter 4. Distributed Description Logic with Defaults

Definition 4.2. Given well-formed formulae a, b, c, d, e, we define the following

transformations:

a). Prerequisite substitution〈
{a:b∧c

b
}, d→ a

〉
|∼ d:b∧c

b

b). Consequent substitution〈
{a:b∧c

b
}, b→ e

〉
|∼ a:b∧c∧e

e

c). Justification reduction〈
{a:b∧c∧d

b
}, a→ d

〉
|∼ a:b∧c

b

d). Default transitivity〈
{a:b∧c

b
, b:e∧f

e
},>

〉
|∼ a:b∧c∧e∧f

b∧e

The set of transformations (a)–(d) will be called basic transformations. These

transformations can be further used in the communication process. Let us start with

the following lemma.

Lemma 4.1. Given default theories ∆ = 〈D,W 〉 and ∆′ = 〈D ∪ δ,W 〉, where δ is

obtained using basic transformation t = 〈Dt, ft〉 |∼ δ, and E is an extension of ∆′, if

the set of generating defaults GD(E,∆′) includes δ, it also contains Dt, i.e.

δ ∈ GD(E,∆′)→ Dt ⊆ GD(E,∆′)

Proof. By Definition 3.9, δ ∈ GD(E,∆′) iff

Pre(δ) ∈ E, and

¬Jus(δ) 6∈ E

and Dt ⊆ GD(E,∆′) iff

56

4.2. Transforming defaults

PRE(Dt) ⊆ E, and

∀β∈JUS(Dt)¬β 6∈ E

To prove the lemma, we will prove that for each basic transformation the following two

conditions hold:

Pre(δ) ∈ E → PRE(Dt) ⊆ E (4.1)

¬Jus(δ) 6∈ E → ∀β∈JUS(Dt)¬β 6∈ E (4.2)

Firstly, let us show that each basic transformation fulfills condition 4.1. Since

W |= ft and Th(W) ⊆ E, then ft ∈ E. For the basic transformation (a) this shows

d→ a. For the basic transformations (b)–(d), Pre(δ) ∈ PRE(Dt).

Condition 4.2 can be generalized as:

¬Jus(δ) 6∈ E → ¬
∧

β∈JUS(Dt)

β 6∈ E

and rewritten as:

¬
∧

β∈JUS(Dt)

β ∈ E → ¬Jus(δ) ∈ E

This is true if

¬
∧

β∈JUS(Dt)

β → ¬Jus(δ)

and further

Jus(δ)→
∧

β∈JUS(Dt)

β (4.3)

Condition 4.3 trivially holds for basic transformations (a), (b) and (d). It also holds

for basic transformation (c) knowing that a ∈ E and W |= a→ d.

Having proven conditions 4.1 and 4.2 this end the proof of the lemma.

57

Chapter 4. Distributed Description Logic with Defaults

Example 4.2. Let us illustrate the effect of Lemma 4.1 on the first basic

transformation. Let us take the initial default theory ∆ = 〈D,W 〉, where D = {a:b∧c
b
}

and W = {d → a}. Using the basic transformation (a) we construct the new default

theory ∆′ = 〈D′,W 〉, where D′ = D ∪ {d:b∧c
b
}.

Let us now consider two modifications to the default theory ∆′.

∆1 = 〈D′,W ∪ {d}〉

∆2 = 〈D′,W ∪ {a}〉

The default ∆1 theory has exactly one extension E1 = {a, b, d} with the generating

set of defaults GD(E1,∆1) = {a:b∧c
b
, d:b∧c

b
}.

The default ∆2 theory has exactly one extension E2 = {a, b} with the generating

set of defaults GD(E2,∆2) = {a:b∧c
b
}.

This shows that the new default only appears in a generating set where the source

default also exists. However, the inverse is not true as the set of generating defaults of

E2 contains only the source default.

Lemma 4.2. Given the default theories ∆ = 〈D,W 〉 and ∆′ = 〈D ∪ δ,W 〉, where δ is

obtained using basic transformation t = 〈Dt, ft〉 |∼ δ, and E is an extension of ∆′, the

following holds:

Con(δ) ∈ Th(CON(Dt) ∪W)

Proof. For the basic transformations (a), (c), (d) Con(δ) ∈ CON(Dt). For (b) the

lemma holds, knowing that W |= b→ e

Let us introduce the order relation between extension sets. We say that ext(∆) �

ext(∆′) for

ext(∆) = E1, . . . , En

ext(∆′) = F1, . . . , Fk

iff

∀E∈ext(∆)∃E∈ext(∆′)E ⊆ F

58

4.2. Transforming defaults

We also define the equality relation ext(∆) = ext(∆′) iff

ext(∆) � ext(∆′)

Lemma 4.3. Given default theories ∆ = 〈D,W 〉 and ∆′ = 〈D ∪ δ,W 〉, where ∆ |∼ δ

using any one basic transformation, the theory ∆′ gives the same extensions as ∆, i.e.

ext(∆′) = ext(∆).

Proof. Assume that for a default theory ∆ = 〈D,W 〉 transformation t = 〈Dt, ft〉 |∼ δ

was applied. This entails that Dt ⊆ D and W |= ft hold. Let ∆′ = 〈D ∪ δ,W 〉.

For the theories ∆ and ∆′ we have finite sets of extensions ext(∆) = {E1, . . . , Ek}

and ext(∆′) = {F1, . . . , Fj}. For each extension E we have the set of generating rules

GD(E,∆). We should consider two cases.

1. There is no extension E ∈ ext(∆) for which Dt ∈ GD(E,∆)

2. There is such an extension E.

For the case (1) it is obvious that ext(∆) = ext(∆′), as by Lemma 4.1 the

transformation result δ is not in any set of generating defaults of ∆′.

Consider case (2). Let F be an extension of ∆′. If δ 6∈ GD(F,∆′), then there exists

an extension E of ∆ such that GD(E,∆) = GD(F,∆′), and since both default theories

have the same set of facts W , by Theorem 2.5 (Reiter) we have E = F .

If, on the other hand, δ ∈ GD(F,∆′), then by Lemma 4.1 also Dt ∈ GD(F,∆′) and

there exists an extension E of ∆ such that GD(E,∆)∪{δ} = DF . By Lemma 4.2 and

Theorem 2.5 (Reiter) we conclude that E = F .

This ends the proof of ext(∆) = ext(∆′) having proved E = F for all cases.

Let us define the sequence of default transformations, denoted by |∼∗, as follows.

The sequence of default transformations 〈D,W 〉 |∼∗ δ occurs, when the transformation

〈Dn,W 〉 |∼ δ can be applied, where D0, . . . , Dn is a sequence such that D0 = D and

Di = Di−1∪{δi} where δi is obtained by applying a basic transformation on 〈Di−1,W 〉.

Theorem 4.1. Given default theories ∆ = 〈D,W 〉 and ∆′ = 〈D′,W 〉, where D ⊆ D′

and ∀δ∈D′\DD |∼∗ δ, we have ext(∆) = ext(∆′)

59

Chapter 4. Distributed Description Logic with Defaults

Proof. We prove the theorem inductively. For D′ \D = {d1, . . . , dn} let

D0 = D

Di = Di−1 ∪ {di} |i=1...n

This makes Dn = D′.

1. We have ext(〈D0,W 〉 = ext(∆) as D0 = D.

2. Assume ext(〈Di−1,W 〉) = ext(∆).

3. By Lemma 4.3 ext(〈Di,W 〉) = ext(〈Di−1,W 〉) since Di = Di−1 ∪ {δ}, where

〈Di−1,W 〉 |∼ δ.

This proves that ext(〈Di,W 〉) = ext(∆) for any i. Since D′ = Dn, we have

ext(∆′) = ext(∆).

4.3 Reasoning with default transformations

In a multi-agent system the peers exchange knowledge by means of querying each

other and utilising the answers in order to reach conclusions. Following the inference

procedure for Distributed Description Logic proposed in [68], the query, which is passed

between ontologies is the subsumption query in the form A v B, which in FOL is

denoted as A(x)→ B(x). Here, we will concentrate on this type of query and we will

denote it by writing A v B? to distinguish it from a DL statement.

For a query A v B? to a default theory ∆ = 〈D,W 〉 we will presume there are

three possible answers:

• True if W |= A v B,

• False if W 6|= A v B,

• True by default if the default A : BuJ
B

can be generated using the default

transformations, where A and B are the concepts from the query and J is the

justification.

60

4.3. Reasoning with default transformations

The first two answers are strict and do not require further processing. The last

answer can be treated as a partial result and the final answer can be inferred when the

justifications are checked.

Throughout the algorithm there are references to a DL reasoning procedure in the

form W |= A v B. These steps can be treated as calls to an inference procedure for

Description Logics such as the tableau reasoning algorithm [10].

Algorithm 4.1: query

Input: Theory ∆ = 〈D,W 〉
Input: Query A v B?

begin
if W |= A v B then1

return True;

E ← findExtensions(〈D,W 〉);2

result ← ∅;
foreach E ∈ E do3

if A v B is consistent with E then
D̄ ← findDefaults(GD(∆, E), W , A v B?);
result ← result ∪ D̄;

if result = ∅ then4

return False;

result’ ← ∅;
foreach δ ∈ result do5

δ′ ← reduceJustification(δ, W);
result’ ← result’ ∪ {δ′};

return result’;
end

Algorithm 4.1 shows the main idea of answering a query such as proposed above.

Line 1 checks for a trivial answer based on the factual knowledge. If such an answer

cannot be given, the next step is to find all extensions of the default theory (Line 2).

This is done using an algorithm such as described in [12]. Iterating over all extensions

(Line 3), the procedure gathers defaults in the form A : BuJ
B

, possibly from different

extensions. This is done by transforming the generating defaults of each extension. If

no such defaults are found, a negative answer is returned (Line 4). Finally, the resulting

defaults are processed, applying the reduce justifications transformation (Line 5).

61

Chapter 4. Distributed Description Logic with Defaults

Algorithm 4.2: findDefaults

Input: Defaults D̂
Input: Facts W
Input: Query A v B?

begin

D0 ← {δ ∈ D̂ | W |= A v Pre(δ);1

result ← ∅;
foreach δ ∈ D0 do

if W |= Con(δ) v B then2

result ← result ∪ {δ};
else

D̄ = findDefaults(D̂ \ δ, W ∪ {Con(δ)}, Con(δ) v B?);3

foreach δ̄ ∈ D̄ do
δ’ ← mergeDefaults(δ, δ̄);4

result ← result ∪ {δ′};

return result;
end

The procedure of finding defaults that can be treated as intermediate answers

to the given query is expressed in Algorithm 4.2. This procedure applies default

transformations (a), (b) and (c) from Definition 4.2. Line 1 selects the defaults that

are qualified for applying the prerequisite substitution transformation. Then, each of

the selected defaults is checked whether it can be returned as the default answer to the

given query (Line 2). If this is not the case, the algorithm is executed recursively (Line

3) to find a sequence of defaults that having applied additionally the default transitivity

transformation will produce an appropriate default form. Line 4 merges the sequenced

defaults to generate the final result using the formula presented in Algorithm 4.3.

Algorithm 4.3: mergeDefaults

Input: Defaults δ1, δ2

Output: Merged default

begin

return
Pre(δ1) : Jus(δ1) ∧ Jus(δ2)

Con(δ2)
;

end

Algorithm 4.4 shows the application of the justification reduction default

transformation. The default’s justifications are confronted with the known facts from

62

4.3. Reasoning with default transformations

Algorithm 4.4: reduceJustification

Input: Default δ
Input: Facts W
Output: Default with reduced justification

begin
Assume Jus(δ) = β1 ∧ . . . ∧ βn;
J ← {βi | W 6|= βi};1

β ←
∧
β∈J β

return
Pre(δ) : β
Con(δ)

;

end

the knowledge base and if any of them proves to be true in W , then it is removed from

the default (Line 1).

In effect, the query algorithm generates one of three possible answers, which can be

True, False or a set of defaults which are in the form A : BuJ
B

.

63

Chapter 5

DDLD-based Multi-Agent System

Agents are autonomous entities designed to pursue their goals. In a multi-agent system

one of the actions used by agents is exchanging information between each other. One of

the most basic communication schemes is the query-answer scenario. One agent needs

to obtain certain information that another agent posesses and sends a query to that

agent. The second agent responds with an answer to the query.

Agents are more than only servers of information. An agent may choose to act

differently depending on its state or the credentials of the querying agent. It can

selectively show information instead of simply answering queries to its knowledge base.

For instance, an agent connected with a university will not publicly share personal

information about the students, however it may answer queries whether a specific

person is a student of the university. On the other hand, one could prevent the agent

from giving out a full list of students. Such fine-grained control over what information

is shared would not be possible by directly sharing a complete knowledge base.

Agents can act on behalf of a user by answering the user’s queries or searching for

information. Such tasks may require information from external sources such as online

ontologies and other agents. In order to be able to send queries to other agents, it

has to be able to find appropriate peers and formulate queries in a language that the

remote peer will understand.

The environment of the Semantic Web, in which we place our agents is a large and

dynamic network of interlinked information. In such conditions it is necessary to accept

Chapter 5. DDLD-based Multi-Agent System

the open world assumption when discovering knowledge in the Web as it is impossible

to gather absolutely complete information. However, it can often be beneficial to make

assumptions in the light of incomplete information. Default logic is a formalism that

makes it possible to reason with assumptions in an environment which is known to

contain incomplete information.

In the previous chapter we defined a DLD knowledge base, which is constructed

using default logic embedded into description logic. Agents, which use DLD knowledge

bases utilize defaults locally to resolve the issues with incomplete information. However,

as argued in the previous chapter, in a multi-agent system it is advantageous to

communicate the assumptions made during reasoning between the agents. This chapter

will describe a model of a multi-agent system, which makes use of the notion of

returning defaults as reasoning inferences.

5.1 Motivating examples

To illustrate the need to answer queries with defaults, let us consider the following

examples. The first example shows the usefulness of exchanging defaults between

agents.

Example 5.1. The knowledge bases of two universities Auniv1 and Auniv2 contain

information about their students. For the purpose of each university a default rule is

kept, which enforces the closed world assumption stating that it is assumed that x is

not a student if it does not exist in the local database. Consider the following contents

of the knowledge bases:

Agent Auniv1 Agent Auniv2

: ¬Student

¬Student

: ¬Student

¬Student

Student(JOHN) Student(MARY)

A third agent A0 sends the query Student(JOHN)? to both university agents.

Answering by both agents with a definite statement leads to inconsistency, since the

answers Student(JOHN) and ¬Student(JOHN) are contradictory.

66

5.1. Motivating examples

Auniv1 Auniv2

A0Student(JOHN)?

Student(JOHN)
Student(JOHN)?

¬Student(JOHN)

On the other hand, if agent Auniv2 answers with a default
: ¬Student(JOHN)

¬Student(JOHN)
, then

agent A0 can add both answers to its knowledge base and reach the expected conclusion

that John is a student.

Auniv1 Auniv2

A0Student(JOHN)?

Student(JOHN)
Student(JOHN)?

: ¬Student(JOHN)

¬Student(JOHN)

The second example, apart from showing the advantages of returning defaults as

answers to queries, shows the use of default transformations in the process of distributed

reasoning.

Example 5.2. Consider three agents with the following knowledge bases.

Agent 1 Agent 2 Agent 3

Penguin(PAT) Penguin v Bird Penguin v ¬Flies
Bird : Flies

Flies

In this example Agent 1 aims to discover whether Pat the penguin is able to fly.

The answer to the question Flies(PAT) cannot be given using the first agent’s knowledge

base. However, the two other agents posess information that may help. If Agent 1 asked

Agent 3, it would receive a straightforward answer that penguins cannot fly and thus

Pat cannot fly.

Agent 2, however, possesses information that penguins are birds and typically birds

can fly. Using this knowledge base and default reasoning, it should conclude that

penguins can fly as the default’s justification is consistent with the local knowledge

base. Using the answer from Agent 2, Agent 1 would have the answer that Pat can fly,

which is contrary to the answer from Agent 3.

Using default transformations, Agent 2 is able to return an answer in the form of the

default Penguin : Flies
Flies

. This answer is not inconsistent with the third agent’s answer and

67

Chapter 5. DDLD-based Multi-Agent System

if Agent 1 receives answers from both Agent 2 and Agent 3, it will properly conclude

that Pat cannot fly.

5.2 Model of the system

The formalism of default transformations introduced in the previous chapter can be

used to perform distributed reasoning with multiple knowledge bases, which include

defaults. In this section we will present a model for knowledge representation and

exchange in a specific multi-agent system with shared global knowledge.

Although the reasoning algorithms are independent of how the MAS is defined,

we propose a model in which, apart from local knowledge, agents have access to a

commonly accepted global knowledge. The architecture of our model is motivated by

the structure of the Web, where agents can utilize publicly available knowledge, which

is published in the form of ontologies.

Figure 5.1: Model of the multi-agent system

Figure 5.1 shows an overview of the system. Each agent is an independent entity in

the system and contains its own knowledge base and inference engine. Note that the

agents may also perform other tasks, however, this work concentrates on the exchange

of information within the multi-agent system.

Each agent has exclusive direct access to its local knowledge (LK). The agent can

update this knowledge base either with information acquired from other agents or from

68

5.2. Model of the system

other sources. Other agents do not have direct access to this data. The only way of

obtaining the information is by querying its owner. The agent’s local knowledge base is

divided into two parts: domain knowledge (DK) and environmental knowledge (EK).

The first contains information connected with the agent’s primary activity, while the

second includes information about other agents and information sources. Given the i-th

agent in the MAS, the agent’s knowledge is expressed as LKi = 〈DKi, EKi〉. Apart

from having local knowledge bases, all agents in the multi-agent system share global

knowledge (GK), which sets the framework for the agent communication language.

5.2.1 Global knowledge

In the presented approach, global knowledge is shared among all agents in the

multi-agent system. In this model, the role of global knowledge is to introduce

a common “upper ontology”, which is then extended by each agent to form its

local domain knowledge. Apart from that, the global knowledge creates a common

vocabulary for exchanging information between agents. In example 5.2 the concepts

Bird and Flies ought to be defined in an external ontology, which is understood by all

the agents.

5.2.2 Domain knowledge

The agent’s domain knowledge is its internal representation of the information needed

for local reasoning. In our approach, domain knowledge does not depend on the

environmental knowledge and can be used for local reasoning.

The local domain knowledge (DK) and the global ontologies (GK) are expressed in

terms of description logic with defaults. The local reasoning processes take into account

both of these knowledge bases (DK∪GK). This makes it possible to formulate queries

to other agents in terms of the common vocabulary. The component responsible for

distributed reasoning utilizes the environmental knowledge in order to find information

required for the current reasoning task by communicating with other agents.

It is assumed that an agent’s local domain knowledge is consistent with the global

knoweledge. Otherwise, the overall knowledge base of the agent would be inconsistent

69

Chapter 5. DDLD-based Multi-Agent System

and would not be useful for reasoning. Moreover, it is assumed that all concepts, roles

and individuals are globally uniquely identified. This means that no two concepts with

the same name can exist, which have different semantical meanings associated with

them. Globally unique identifiers make communicated information unambiguous.

As an implementation remark, note that URI identifiers can be used to achieve

globally uniquely identified terms. Such identifiers are used, among others, in the RDF

framework.

5.2.3 Communication language

The agents in a multi-agent system exchange information using a communication

language and a protocol for specifying types of messages and the available replies.

For the purpose of distributed reasoning, we will use a communication protocol, where

agent X sends a query agent Y asking if the other peer knows anything about the

concept A being subsumed by concept B. We denote this query as A v B?. Although

in description logic the axiom A v B is equivalent to ¬B v ¬A, the query ¬B v ¬A?

is considered as a different query due to the form of possible replies.

Agent Y replies to a query A v B? with one of the following statements:

• True – Agent Y entails A v B and Agent X can add A v B to its knowledge

base,

• False – Agent Y does not entail A v B and Agent X does not gain any new

knowledge,

• set of defaults di in the form
A : Ji uB

B
, where Ji are the defaults’ justifications

– Agent X can add these to its knowledge base.

The communication language assumes that the concepts appearing in the query

are atomic description logic concepts. Moreover, it has to be ensured that the

communicating agents both understand the concepts being transmitted.

70

5.2. Model of the system

Let us define the vocabulary of a knowledge base.

Definition 5.1. The vocabulary V of a knowledge base KB is the set of all concept

names occurring in KB and is denoted as V (KB) ⊆ T, where T is the set of all possible

concept names.

The vocabulary of the i-th agent in the multi-agent system will be denoted as:

Vi = V (DKi ∪GK) = V (DKi) ∪ V (GK)

where V (DKi) is the vocabulary of the i-th agent’s local domain knowledge and V (GK)

is the vocabulary of the global knowledge.

The common vocabulary of two agents i and j is the intersection of the agents’

vocabularies Vi ∩ Vj. Note that the common vocabulary will always contain the

vocabulary of the global knowledge V (GK) ⊆ Vi ∩ Vj and may also contain additional

common concept names, which both agents understand.

5.2.4 Environmental knowledge

For an agent to know, with which agents it can communicate about which topics, it

needs to possess environmental knowledge about peers it may connect to. Two agents

can exchange messages only if both of them share a common vocabulary. An agent

may send the query Penguin v Flies? only to other agents that understand the concepts

Penguin and Flies.

In order to manage the information about its peers, each agent maintains

environmental knowledge, which provides information about how to interact with the

environment and other agents. The distributed reasoning procedure utilizes both types

of knowledge to execute inference tasks in a distributed environment.

The environmental knowledge consists of two parts. Firstly, it incudes the

vocabulary of the agent in the form of a set of concept and role names, about which

the agent can be queried. Secondly, the environmental knowledge contains information

about other agents and their vocabularies.

71

Chapter 5. DDLD-based Multi-Agent System

Environmental knowledge can be expressed as the relation between the set of agents

and the set of concepts EK ⊆ MAS × T, where MAS is the set of agents in the

multi-agent system and T is the set of all possible concept names. In practice, when

searching for those agents that can answer a certain query, a data structure connecting

concept names to agents is needed. Let us define the function agents, which returns a

set of agents, which understand the concept name C as follows:

agents(C) = {A ∈MAS | (A,C) ∈ EK}

In this work we will assume that the environmental knowledge is given a priori.

However, it is a valuable topic to investigate how to acquire such information. The

work by Ryżko [62] describes a multi-agent system using explanation based learning to

acquire environmental knowledge through learning.

5.3 Distributed reasoning

The distributed reasoning component of the agent deals with identifying queries to be

issued to remote information sources, choosing agents to communicate with and then

sending appropriate queries.

An agent has the aim to identify such queries, for which the answers could change

the inferences. It is unnecessary to ask questions, which have no influence on the

outcome of the current inference task. The agent uses the tableau method to perform

inferences on the local knowledge base (see Chapter 3 for a detailed description). In

short, this algorithm tries to create a model of the description logic knowledge base

by building a set of ABoxes. A disjunction in the KB creates two branches, which

have to be expanded and checked for consistency. The algorithm ends when one of

the branches is complete and does not contain an obvious contradiction (a clash) or all

branches are closed containing clashes. The outcome of the tableau algorithm can be

changed if adding a new piece of information causes an open branch to close.

In consequence, the goal of issuing queries to other agents is to close branches,

which would not be closed only basing on the local knowledge base. Suppose the ABox

72

5.3. Distributed reasoning

A contains two assertions A(a) and B(a). In the local KB they do not produce a

clash. However, if another source can provide information that (¬B t ¬A)(a), the

branch would be closed and a different conclusion could be reached. The assertion

(¬B t ¬A)(a) will be added to the KB if either the subsumption relation B v ¬A or

A v ¬B is asserted. This leads to the conclusion that when the assertions A(a) and

B(a) are encountered, the agent should send the queries A v ¬B? and B v ¬A? to

other agents and if it receives a positive or a default answer, the results of reasoning

may change.

In Example 5.2, the first agent’s tableau will contain the ABox

A = {Penguin(PAT),¬Flies(PAT)}. The first assertion is taken from the knowledge

base and the second is the negation of the query. Now, the two queries that can be

sent to other agents are Penguin v Flies and ¬Flies v ¬Penguin. Any of these queries

answered positively would directly cause the answer to the query Flies(PAT) to become

positive. However, neither Agent 2 nor Agent 3 will answer positively. Agent 2 will

nonetheless provide the answer
Penguin : Flies

Flies
. The answer in the form of a default

causes the asking agent to assimilate the default to its knowledge base. The agent

must recompute the extensions, since adding a default can result in changing the

number of extensions. Agent 1 can add this default to its knowledge base and compute

a single extension {Penguin(PAT),Flies(PAT)}, which can answer the query Flies(PAT)?

positively.

The third agent’s knowledge can, however, change this outcome since it knows that

penguins cannot fly. The default reasoning procedure, before deciding to apply the

default (which came from Agent 2), will check its justification. Since this is done using

the same tableau algorithm, the ABox A = {Penguin(PAT),Flies(PAT)} will be tested

for consistency. The first assertion of A comes from the knowledge base and the second

one is the tested justification. This ABox will produce the queries Penguin v ¬Flies and

Flies v ¬Penguin. The first one can be answered by Agent 3, causing the tableau to

close with a clash and disallowing the default
Penguin : Flies

Flies
to be applied for PAT.

The final result is the answer False to the query Flies(PAT).

73

Chapter 5. DDLD-based Multi-Agent System

The exchange of knowledge between agents is realized by extending the tableau

reasoning procedure by adding a new tableau rule. The rule in Figure 5.2 says that if

no other rules can be applied, pairs of concepts (A,B) are chosen to be formed into a

query. The query is formed by creating two subsumptions A v ¬B and B v ¬A. If a

query succeeds, it results in making the tableau branch inconsistent.

If no other rules can be applied and A contains A and B, and the query (A,B) has
not been sent yet,
then prepareQuery(A,B).

Figure 5.2: Tableau rule for issuing queries

For each pair of assertions A(a), B(a), where A and B are atomic concepts and a is

an individual, the procedure prepareQuery(A,B) is run. If either of the atomic concepts

subsumes the other in the local knowledge base (i.e. A v B or B v A), the queries

are not sent, because a positive answer would lead to inconsistency. The subsumption

test should be possible to be made very efficient by indexing the concept lattice [48],

since only atomic concepts may appear in queries. The procedure sendQuery(a, q)

asynchronously sends the query q to the agent a. Thus, the procedure prepareQuery

returns immediately and does not wait to receive answers from queried agents.

Algorithm 5.1: prepareQuery

Input: Concepts A, B

begin
if A v B or B v A is entailed by the local knowledge base then

return;

targetAgents = agents(A) ∩ agents(B);
foreach a ∈ targetAgents do

sendQuery(a, A v ¬B);
sendQuery(a, B v ¬A);

end

The answers from other agents are recieved asyncronously. After all agents respond

or a timeout is reached, if there are any answers, which are not False, the local query

has to be recomputed. In the process, new queries, which were not issued before, can

be sent. The process continues until no answers to queries are received. The process

74

5.4. Handling inconsistency

is guraranteed to finish, since no query is issued twice and the set of agents and their

vocabularies are finite.

Algorithm 5.2: answerReceived

Input: answer a

begin

if a is a default
A : J uB

B
then

Add
A : J uB

B
to the current knowledge base;

Recompute extensions;

else if a is a positive answer A v B then
Add ¬A tB to each Ai in the tableau;

end

The answerReceived function is a callback function called asynchronously after each

answer from a remote agent is received. Note that the recomputation of extensions

can be postponed until more answers are received in order to reduce the number of

times the extensions are determined. When the agent is no longer waiting for answers

from other agents, the answer to the query is determined by the local default reasoning

procedure.

5.4 Handling inconsistency

Although it is assumed that each agent’s own knowledge base is consistent, it may

occur that if the distributed knowledge bases were combined, they would be found

inconsistent. In a message passing setting, an agent can receive a message containing

information, which is inconsistent with its current knowledge. This situation has to be

handled, otherwise, no meaningful inferences could be reached.

In our approach an answer from one agent cannot cause inconsistency, because the

tableau rule shown in Figure 5.2 does not generate queries, for which positive answers

would make the knowledge base inconsistent. However, since multiple queries are sent

asynchronously to other agents, it may occur that two agents answer a different query

positively and these two answers cause inconsistency. In the simplest case, an agent

75

Chapter 5. DDLD-based Multi-Agent System

can send the following two queries: A v B? and A v ¬B?. The positive answers to

these queries are together inconsistent.

To solve this problem, one of these answers has to be ignored in favour of the other.

The choice of which agent’s answer to ignore can be made arbitrarily or the decision

can be based on some other means of assesing the value of the answers. One solution,

which is used in the work by Ryżko [62] would be to employ a learnt confidence measure,

where the information from the agent, which is trusted less would be discarded.

There is also a situation, which does not cause inconsistency but can be considered

suspicious. In particular, when an agent sends the query A v B? to multiple agents

and receives both True (A v B) and default (
A : J uB

B
) answers, the semantics of

these answers are in a sense contrary. The first answer says that absolutely all As are

also Bs, while the second says that usually As are Bs but there can exist exceptions. It

is difficult to state, which of these answers should be treated with a higher priority. If

both answers are added to the knowledge base, the certain rule will override the default

and will not allow exceptions. However, it can be also presumed that the agent, which

allows exceptions to a rule, is more knowledgeable than the agent, which does not allow

exceptions. In order to prefer the default answer, to positive answer would have to be

discarded. Again, this type of situation could be handled by a confidence or trust

measure, which agents would assign to their peers.

This work does not tackle these problems and provides the most straightforward

solutions of arbitrarily discarding inconsistent answers and allowing the certain answer

to shadow the default answers. Nonetheless, this is an interesting topic for future

research.

5.5 Knowledge assimilation and caching

An agent may have to issue many queries to remote agents in order to achieve its

task. Thus, it is important to have a possibility of preventing unnecessarily repeating

a query sent to another agent. During the reasoning process, the agent assimilates all

answers to queries into its domain knowledge for the purpose of solving the current

76

5.6. Agent network topology

task. However, if different tasks would require the same information, it would improve

performance to reuse the once acquired information instead of repeating a query.

This method of caching query results requires a data structure to store axioms,

assertions and defaults obtained from remote agents. The cache data structure is

composed of triples 〈K,A, T 〉, where K is the piece of knowledge, which is stored, A

is the source agent, and T is the time the information was last updated. The time is

needed to invalidate old records. The triples have to be indexed by K to be efficiently

searchable.

Once a query is generated in order to be sent to other agents, the cache is checked,

and if an answer is found, the query does not have to be sent to those agents, whose

answers are already contained in the cache. Such a solution can significantly increase

the efficiency of reasoning by reducing the amount of queries exchanged between agents.

5.6 Agent network topology

Given the assumption that we are dealing with the environment of the Internet and

the World Wide Web and the fact that agents cannot be controlled by a central entity,

we do not have any impact on the topology of agent connections. Looking at the

characteristics of the Web, we can only conjecture that the agents will form a topology

of a small-world network with a small amount of hub nodes.

Regardless of how the agents actually connect to each other, the problem of cycles

in the connection graph has to be addressed. The occurrance of cycles can lead to an

exponential growth of the number of messages passed between the agents or in the worst

case it can lead to a failure in termination. Previous works dealing with distributed

reasoning [63, 17, 20] assumed that an external entity can stratify the knowledge base

a priori, thus preventing cycles from occurring. In our case, cycle have to be detected

dynamically. Adjiman’ algorithm for distributed reasoning [2] deals with cycles by

including the history of queries in the query messages. Here, we propose a method,

which only requires the inclusion of an identifier with the query messages.

The propagation of queries in a network of agents can be seen as a breadth-first

search in the connection graph. This imposes that the processing is stopped, when

77

Chapter 5. DDLD-based Multi-Agent System

a node has already been visited. If the original query to the first agent is given a

universally unique identifier (UUID), then an agent receiving a query with the same

UUID can discard this query. However, cycles in the reasoning process are not harmful

in themselves. The problem is when they cause infinite loops in terms of sending

messages between agents. We can detect a situation leading to an infinite loop by

discarding duplicate messages identified by the UUID of the task together with the

query. Since the number of terms in an agent’s vocabulary is finite and the queries

contain only atomic concepts, the number of possible queries is finite. Assuming the

number of agents is also finite, we can state that the number of messages passed during

the inference process is finite. This leads to the conclusion that in any network topology

the distributed reasoning terminates.

78

Chapter 6

Implementation and evaluation

Chapters 4 and 5 have introduced algorithms and methods for reasoning in distributed

knowledge bases expressed in description logic with defaults. This chapter presents

the implementation and evaluation of the key issues presented in this work. The

implemented system experimentally verifies that the algorithms return expected results.

Moreover, we have tested the scalability of such a multi-agent system with respect to

a growing number of agents involved in the reasoning process of answering a query.

Section 6.1 presents the architecture and key components of the implemented

distributed reasoning system. In Section 6.2 we present tests, which have been

performed in order to verify the validity of the proposed algorithms and to test the

scalability of such a system.

6.1 System architecture

The prototype implementation of the distributed reasoning system has been fully

implemented in the Scala programming language in version 2.8.0 [56], taking advantage

of the language features such as higher-order functions, functional data structures,

closures, parser combinators and pattern matching. Moreover, the Scala language is

compiled into Java Virtual Machine bytecode, which makes it compatible with existing

Java libraries.

Chapter 6. Implementation and evaluation

The multi-agent system has been implemented using actors in the scala standard

library. This solution is adequate for testing purposes. Howeve, for a production

system, an advanced multi-agent platform would have to be used. Our multi-agent

system is designed in such a way, that moving to a different MAS platform would only

require changing the interface to the underlying agent platform. JADE [15] is a good

example of a MAS platform, which is compatible with our implementation.

The experimental system provides a set of homogeneous agents, which differ only

by the knowledge they posess. However, as long as an agent understands and can reply

to the same set of messages, the actual implementation of an agent can be exchanged,

creating a heterogeneous multi-agent system.

Each agent contains a knowledge base expressed with description logic with defaults.

Agents have environmental knowledge, which contains knowledge about the addresses

of remote agents and the vocabularies they understand. This information is used to

select agents to query. The agent’s knowledge base has a layered structure, which is

shown in Figure 6.1.

Figure 6.1: Agent’s knowledge layers

Each agent can answer three types of queries. Firstly, the DefaultQuery is the query,

which is used in the distributed reasoning algorithm and it is in the form A v B?.

The answer is constructed as a set of statements. The set can be empty, contain a

single statement A v B or one or more defaults
A : B u J

B
, where J is the default’s

justification.

The agent can also answer an entailment query, which can be answered credulously

or skeptically (CredulousQuery, SkepticalQuery). This query is usually used to answer a

80

6.1. System architecture

user’s query. All types of queries trigger the distributed reasoning procedure and cause

the asked agent to send additional queries to other agents.

6.1.1 The Description Logic Reasoner

The description logic reasoner is the smallest building block of the reasoning system.

It implements the tableau calculus for description logics [66] and currently supports

the constructors of the ALC langugage, which are conjunction, disjunction, negation

of arbitrary concepts and both quantifiers. The implementation heavily relies on the

Scala language immutable data structures, which are used to represent the tableaux.

By utilizing immutable lists and maps, it is easy to implement a backtracking algorithm,

since all previous states of the tree are kept intact in memory. Moreover, our

implementation allows to add subsequent tableau expansion rules. Hence, the reasoning

engine can be expanded to work with more expressive description logic languages. This

feature is also used to add distributed reasoning capabilities to the inference engine.

The DL reasoner is capable of answering subsumption, consistency and instance

checking queries. All these query types are reduced to solving the consistency problem.

For a real-world implementation, it would be suggested to use a highly-optimized

reasoner, such as Pellet [70] or HermiT [53]. These are production-ready

implementations of the tableau algorithm, which support the full OWL DL language,

which has more constuctors than the ALC language.

In order to simplify the evaluation of the algorithms, the Manchester OWL syntax

[35] has been used as the language for importing knowledge bases into the system. This

syntax provides the following constructors:

Manchester OWL syntax DL expression

C and D C uD
C or D C tD
not C ¬C

R some C ∃R.C
R only C ∀R.C

TOP >
BOTTOM ⊥

where C and D are concept descriptions and R is a role name.

81

Chapter 6. Implementation and evaluation

6.1.2 The Default Logic Reasoner

The default logic reasoner is built on top of the description logic reasoner. The

algorithms described in Chapter 3 have been implemented to find sets of generating

defaults, which identify the extensions of a default theory. Having computed the

extensions, both skeptical and credulous queries can be answered.

The default logic reasoner is further extended by the algorithms proposed in

Chapter 4 for default transformations.

Our implementation of the default logic reasoner can be adapted to use a different

description logic reasoner, such as Pellet or HermiT. However, the distributed reasoning

layer changes the functionality of the DL reasoner, such that it cannot be easily

replaced.

The defaults are expressed using the following notation:

A : B / C

where A, B and C are concept expressions written using the Manchester OWL syntax.

For instance, the default stating that typically a bird can fly unless it has a broken

wing can be written as:

Bird : Fies and not BrokenWing / Flies

6.1.3 Distributed Reasoning

The agents have been implemented using the Scala actors model. This programming

model allows to create independent and asynchronous processing units, which

communicate between each other by passing asynchronous messages.

In order to send queries to other agents in the process of reasoning, a new tableau

expansion rule has been introduced to the description logic reasoner according to the

description in Chapter 5. This new rule generates queries, which are sent to agents,

which understand all vocabulary terms in the query. The asking agent caches answers

from other agents to reduce the network activity. The answers for these queries are

added to the agent’s knowledge base and the reasoning engine can take into account

new defaults or facts.

82

6.2. Test cases

The distributed reasoning layer requires a modified tableau reasoner. In

consequence, an existing description logic reasoner would require modifications to be

used with the distributed reasoning component. The extension comprises of a new

tableau expansion rule. As reasoning engines Pellet and HermiT both are based on

tableau algorithms and they are both open source, we presume it would be feasible to

extend them with the required functionality.

6.2 Test cases

In this section we describe the evaluation of the correctness and the scalability of the

proposed algorithms in terms of different agent topologies. The experiments described

in this section show several representative agent network topologies and address the

problems referring to each of them. The implemented system verifies that the expected

results are reached. Apart from these scenarios, the system is well covered with more

than eighty unit tests for all implemented components.

Since we are dealing with a potentially large agent system connected with Internet

resources, it is important not to introduce additional computational complexity

associated with exchanging queries. In the first two example scenarios, the number

of exchanged queries is proportional to the number of agents, which is an anticipated

result. This result in turn makes it possible to scale the system by distributing agents

onto different processors and thus gaining the possibility to run processes in parallel.

The third example shows how the implemented system works with an ontology, which

has the properties of a real-life ontology.

6.2.1 Chain of agents

The first scenario presents a chain of agents, in which a sequence of agents pass a

query along the chain. The final knowledge item is placed at the end of the chain

and is propagated back to the first agent, which initiated the first query. Figure 6.2

illustrates the connections between agents and the messages sent between them. Ai,

i ∈ {0..n}, B and C are atomic concepts and z is an individual.

83

Chapter 6. Implementation and evaluation

Agent 0

A0(z)

Agent 1

A0 v A1

Agent 2

A1 v A2

Agent n

An : B u C
B

A0 v B?

A0 : B u C

B

A1 v B?

A1 : B u C

B

. . .
An v B?

An : B u C

B

Figure 6.2: Chain of agents

The first agent (Agent 0) is issued the skeptical query B(z). It is a question whether

z is an instance of B. All agents must have B in their vocabulary so that they can

receive queries containing the symbol B.

The query is propagated to subsequent agents until the last agent is reached,

which can answer its query with a default in its knowledge base. This default is then

transformed and sent as a reply by all agents back to the first agent, which receives the

default
A0 : B u C

B
. This default can be used to answer the original skeptical query.

The concept C, which is propagated from the last agent in the default’s justification

is now checked whether the default can be applied. This is performed by issuing the

query A0 v ¬C?. In this scenario, however, there is no agent, which could process such

a query.

By running the scenario in the implemented system, we have verified that increasing

the number of agents leads to linearly increasing number of queries exchanged between

the agents. The time of computing a single query, which is propagated through a chain

of agents, cannot be decreased by running the reasoning processes in parallel, as each

agent has to wait for the answer from its neighbour. However, running many such

queries can lead to an increased efficiency, as an agent waiting for response can use its

processing power to run other inferences.

84

6.2. Test cases

Agent 0

A0(z)
A0 v A1

A0 v A2

. . .
A0 v An

Agent 1

A1 : B

B

Agent 2

A2 : B

B

Agent n

An : B

B

A1 v B?

A1 : B

B

A2 v B?

A2 : B

B
An v B?

An : B

B

Figure 6.3: Star topology

6.2.2 Star topology

The star topology is described as a situation, where one agent directly sends queries

to a number of other agents. Figure 6.3 shows the the queries exchanged between the

agents. The queries in this test case are sent simultaneously and are processed by

the agents concurrently. This case provides the best setting for increasing efficiency

because all queries can be processed in parallel. Furthermore, in this experiment, only

one answer is necessary for Agent 0 to produce a default extension containing B(z).

Nevertheless, the agent will still wait for other replies, since it always receives a default

answer, which could later be invalidated by a negative fact. If, however, some agents

do not reply in time, producing a timeout, the result will not change and the first agent

will return a valid answer.

The number of queries exchanged in this scenario depends linearly on the number

of agents. This means that additional agents, which are queried by one agent do not

increase the overall complexity of the reasoning process. Moreover, in case all queries

are processed independently, they can be run concurrently.

In most cases, the actual reasoning topology will be a combination of the chain and

the star topologies, as both types of situations will occur. Firstly, there are situations,

85

Chapter 6. Implementation and evaluation

where queries are propagated if an agent does not contain all necessary information.

Secondly, an agent may have to query multiple sources to collect all needed data.

6.2.3 Pizza ontology

In order to illustrate the distributed reasoning concept using an existing ontology, we

have chosen the Pizza ontology1, which is used by the Manchester University for tutorial

purposes. The ontology contains concepts related to different types of pizzas with their

bases and toppings. Since the implemented reasoner only operates on the ALC subset

of the OWL-DL language, several axioms had to be ommited from the original ontology,

which used the cardinality constuctors. Figure 6.4 presents an overview of the concepts

in the pizza ontology.

Figure 6.4: Pizza ontology overview

1http://www.co-ode.org/ontologies/pizza/2007/02/12/pizza.owl

86

http://www.co-ode.org/ontologies/pizza/2007/02/12/pizza.owl

6.2. Test cases

Different pizza names are defined by the types of toppings they can have. For

instance, a Margherita has two toppings: MozzarellaTopping and TomatoTopping. The

pizza ontology does not include any defaults, however by browsing the concepts, one

can find that the majority of pizzas have a cheese topping. There are six classes defined,

which are subclasses of CheeseTopping. The only pizza that is defined not to include

cheese is FruttiDiMare. The class of all pizzas, which have a cheese topping is named

CheeseyPizza. This leads to the conclusion that the following default can be formulated:

Pizza : CheeseyPizza

CheeseyPizza

In order to distribute the ontology among agents, we have chosen to extract the

information about the twenty three named pizzas from the ontology and further divide

the named pizzas into two parts. In result, we have defined the pizza ontology without

named pizzas as the global knowledge available for every agent and two agents with

disjoint sets of named pizzas, specifically Pizzas A−L and Pizzas M−Z. Moreover,

the default knowledge is included within a separate agent – Pizza Defaults. Thus, the

knowledge about pizzas is divided among three agents. Note that the problem of

partitioning large knowledge bases is not covered by this work, as it is assumed that

the algorithms work on existing knowledge partitions.

Pizza Italiano

Margherita(p1)
FruttiDiMare(p2)
ChefsPizza(p3)
ChefsPizza v Pizza

Pizza Defaults

Pizza : CheeseyPizza

CheeseyPizza

Pizzas A−L

FruttiDiMare v ¬CheeseyPizza

Pizzas M−Z

Margherita v CheeseyPizza

Figure 6.5: Pizza example

87

Chapter 6. Implementation and evaluation

Let us define a new agent that will use the above agents’ knowledge. Assume there

is an agent called Pizza Italiano, which is connected with a restaurant and contains

knowledge about the serverd meals, among which there are several types of pizza. In

particular, two pizzas, Margherita and FruttiDiMare, exist in the pizza ontology, and

one, ChefsPizza, is a newly defined concept in the restaurant’s ontology. Figure 6.5

shows all defined agents with the parts of their knowledge bases, which take part in

the presented scenario.

The Pizza Italiano agent is interested in obtaining additional information about the

pizzas, which are served. In this example, the agent is asked the question about each

of the offered pizzas, whether the pizza contains cheese. The restaurant agent does not

contain this information itself and has to send queries to agents, which are specialized

in describing pizzas.

The Pizza Defaults agent will always answer that typically, a pizza contains cheese,

regardless of the actual type of pizza. The agents posessing information about

named pizzas can in turn give answers according to their knowledge. The default

knowledge allows to answer queries with default knowledge, when the exact knowledge

is unavailable or does not exist. If the restaurant defines a new pizza type, it will be

automatically inferred to be a CheeseyPizza if not stated otherwise.

The following conclusions can be made from this example:

1. The agent containing default knowledge can answer a query, which is correct in

most cases.

2. The Pizza Defaults agent can provide default information about entities, which

are not completely defined, such as ChefsPizza in our example.

3. Since the answer is in the form of a default, the asking agent can verify and

invalidate this information by receiving answers from other sources.

4. There is no time overhead connected with including the Pizza Defaults agent in

the reasoning process, since queries sent to all three agents are processed concurrently.

5. The overall pizza ontology can be expressed in fewer axioms, as the fact that

most pizzas have a cheese topping can be expressed as a default, and only exceptions

need to be explicitly named.

6. The queries for cheesey pizzas can be calculated more efficiently.

88

6.3. Summary

6.3 Summary

The proposed multi-agent system has been successfully implemented and tested. The

results prove that such a system is feasible and can aid in modelling information in the

Semantic Web. The implementation is based on a standard syntax for expressing

description logic expressions. The knowledge base inference engine has a layered

architecture, which makes it more robust and allows to substitute any of the layers

with a different implementation. In particular, the DL reasoner, which has the

greatest impact on performance, can potentially be replaced with one of the existing

production-ready solutions. The implementation lacks some possible optimizations,

which would increase the overall system effictiency. Nonetheless, these optimizations

would not change the core methods utilized in the system but would make it more

difficult to analyze and evaluate.

The experiments, which were performed show that complex reasoning tasks can

be performed using multiple distributed agents equipped with their own reasoners.

Moreover, agents can be connected in an arbitrary topology and queries can be

propagated through the network of agents until peers with final answers are found.

The first two experiments executed in the prototype system demonstrate that the

number of queries exchanged in the entire system grows linearly with the number

of agents. This result shows the ability to scale such a system into the realities of

the Internet, as real-world knowledge bases are undoubtedly very complex. The last

scenario uses an existing ontology to model information distributed into several agents

and containing defaults. This example shows the usefulness of using defaults to express

information in a multi-agent system.

89

Chapter 7

Conclusions

The Semantic Web is a rapidly developing research area, which combines several aspects

of the evolution of the Web. Among others, this field involves knowledge representation

formalisms and agents, which use semantically rich information.

This dissertation contributes to the research on the methods of exchanging

knowledge between agents in a multi-agent system. The work presents a method for

representing and exchanging knowledge, which may be incomplete. The formalism of

default logic is used in order to express typical situations and assumptions for drawing

inferences. The work is based on description logic with defaults. In this formalism,

defaults are embedded into the ALC description logic. A method of communicating

assumptions between agents is introduced. Any additional information can be utilized

to invalidate facts, for which the assumptions are proved to be incorrect.

In order to achieve this goal, the formalism of default transformations is introduced

together with an important property of the transformations, which says that

transformed defaults do not alter the knowledge base’s inferences. This enables

returning defaults as query results. Basing on the defined default transformations,

a reasoning algorithm is introduced, which provides a possibility of answering queries

either with definitive positive and negative answers, or transformed defaults.

Furthermore, a model of a multi-agent system for exchanging knowledge in

the Semantic Web is presented. An agent in this model consists of domain and

environmental knowledge. The agent can also utilize global knowledge, which is shared

Chapter 7. Conclusions

among agents. Moreover, a distributed reasoning algorithm is described, in which the

agents exchange queries and answers to reach a specified goal. The algorithm extends

the tableau method for description logic by introducing a rule that triggers sending

queries to remote agents. This method makes use of the previously introduced default

transformations.

Finally, the introduced algorithms have been implemented in a prototype system.

The implementation is well covered with unit tests and several usage scenarios are

described to assess the correctness and the scalability of the proposed solutions.

The test cases show that description logic with defaults is an appropriate knowledge

representation formalism for the Semantic Web and makes it easier to manage

incomplete knowledge. Moreover, employing the proposed algorithms in a multi-agent

system leads to the improvement of efficiency due to the possibility to distribute

knowledge among remote peers.

As future work, we plan to extending the proposed formalisms to more expressive

description logics than ALC. Moreover, specifying an extension to the OWL language

would enable to encode defaults into existing ontologies. By developing an extension

to an ontology editor, such as Protégé, using defaults with ontologies could be made

more widespread.

Furthermore, we intend to work on including a learning aspect to the communication

of defaults between agents. Defaults, which come from remote agents, may conflict with

other defaults or strict rules. The task of learning would be to modify the defaults and

strict rules taking into account a confidence measure towards different information

sources.

92

Abbreviations and Symbols

∆ default theory

ext(∆) set of extensions of the default theory ∆

GD(E,∆) set of generating defaults for extension E of theory ∆

Pre(d) prerequisite of default d

Jus(d) justification of default d

Con(d) consequence of default d

PRE(D) set of prerequisites of defaults D

JUS(D) set of justifications of defaults D

CON(D) set of consequences of defaults D

Th(E) deductive closure of E

ABox assertional component of a DL knowledge base

TBox terminological component of a DL knowledge base

> top concept

⊥ bottom concept

Chapter 7. Conclusions

AI artificial intelligence

ALC Attributive Concept Language with Complements

CWA closed world assumption

DAI distributed artificial intelligence

DDL distributed description logic

DDL distributed default logic

DDLD distributed description logic with defaults

DL default logic

DL description logic

DLD description logic with defaults

FOL first-order logic

KB knowledge base

KR knowledge representation

MAS multi-agent system

OWA open world assumption

OWL Web Ontology Language

SW Semantic Web

WWW World Wide Web

XML Extensible Markup Language

94

References

[1] Agent communication language specifications, 2002. <http://www.fipa.org/

repository/aclspecs.html>.

[2] Philippe Adjiman, Philippe Chatalic, François Goasdoué, Marie-Christine

Rousset, and Laurent Simon. Distributed reasoning in a peer-to-peer setting:

Application to the semantic web. J. Artif. Intell. Res. (JAIR), 25:269–314, 2006.

[3] Eyal Amir and Sheila McIlraith. Partition-based logical reasoning for first-order

and propositional theories. Artif. Intell., 162(1-2):49–88, 2005.

[4] Grigoris Antoniou. Nonmonotonic Reasoning. MIT Press, 1997.

[5] Grigoris Antoniou. A nonmonotonic rule system using ontologies. In RuleML,

2002.

[6] Grigoris Antoniou and Frank van Harmelen. A Semantic Web Primer. MIT Press,

Cambridge, MA, 2. edition, 2008.

[7] Grigoris Antoniou and Gerd Wagner. Rules and defeasible reasoning on the

semantic web. In RuleML, pages 111–120, 2003.

[8] Franz Baader. Augmenting concept languages by transitive closure of roles: An

alternative to terminological cycles. In IJCAI, pages 446–451, 1991.

[9] Franz Baader, Martin Buchheit, and Bernhard Hollunder. Cardinality restrictions

on concepts. In Advances in Artificial Intelligence, 18th Annual German

Conference on Artificial Intelligence, pages 51–62, 1994.

<http://www.fipa.org/repository/aclspecs.html>
<http://www.fipa.org/repository/aclspecs.html>

References

[10] Franz Baader, Diego Calvanese, Deborah L. McGuinness, Daniele Nardi, and

Peter F. Patel-Schneider, editors. The description logic handbook: theory,

implementation, and applications. Cambridge University Press, New York, NY,

USA, 2007.

[11] Franz Baader and Philipp Hanschke. Extensions of concept languages for a

mechanical engineering application. In Hans Jürgen Ohlbach, editor, GWAI-92:

Advances in Artificial Intelligence, volume 671 of Lecture Notes in Computer

Science, pages 132–143. Springer Berlin / Heidelberg, 1993.

[12] Franz Baader and Bernhard Hollunder. Embedding defaults into terminological

knowledge representation formalisms. Technical Report RR-93-20, Deutsches

Forschungszentrum für Künstliche Intelligenz GmbH, 1993.

[13] Jie Bao, George Voutsadakis, Giora Slutzki, and Vasant Honavar. Package-based

description logics. In Modular Ontologies, pages 349–371. Springer, 2009.

[14] Dave Beckett. RDF/XML syntax specification (revised), 2004. <http://www.w3.

org/TR/rdf-syntax-grammar/>.

[15] F. Bellifemine, A. Poggi, and G. Rimassa. JADE–A FIPA-compliant agent

framework. In Proceedings of PAAM, volume 99, pages 97–108, 1999.

[16] Tim Berners-Lee, James Hendler, and Ora Lassila. The semantic web. Scientific

American, 284(5):34–43, 2001.

[17] Alexander Borgida and Luciano Serafini. Distributed description logics:

Assimilating information from peer sources. J. Data Semantics, 1:153–184, 2003.

[18] Ronald J. Brachman and Hector J. Levesque. The tractability of subsumption in

frame-based description languages. In AAAI, pages 34–37, 1984.

[19] Dan Brickley and Ramanathan V. Guha. RDF vocabulary description language

1.0: RDF schema, 2004. <http://www.w3.org/TR/rdf-schema/>.

96

<http://www.w3.org/TR/rdf-syntax-grammar/>
<http://www.w3.org/TR/rdf-syntax-grammar/>
<http://www.w3.org/TR/rdf-schema/>

References

[20] Pawel Cholewinski. Reasoning with stratified default theories. In LPNMR ’95:

Proceedings of the Third International Conference on Logic Programming and

Nonmonotonic Reasoning, pages 273–286, London, UK, 1995. Springer-Verlag.

[21] Keith L. Clark. Negation as failure. In Logic and Data Bases, pages 293–322,

1977.

[22] Dan Connolly, Frank van Harmelen, Ian Horrocks, Deborah L. McGuinness,

Peter F. Patel-Schneider, and Lynn Andrea Stein. DAML+OIL (march 2001)

reference description, 2001. <http://www.w3.org/TR/daml+oil-reference>.

[23] Dieter Fensel, Ian Horrocks, Frank Van Harmelen, Deborah McGuinness, and

Peter F. Patel-Schneider. OIL: Ontology infrastructure to enable the semantic

web. IEEE Intelligent Systems, 16:200–1, 2001.

[24] T. Finin, R. Fritzson, D. McKay, and R. McEntire. KQML as an Agent

Communication Language. In N. Adam, B. Bhargava, and Y. Yesha, editors,

Proceedings of the 3rd International Conference on Information and Knowledge

Management (CIKM’94), pages 456–463, Gaithersburg, MD, USA, 1994. ACM

Press.

[25] Stan Franklin and Art Graesser. Is it an agent, or just a program?: A taxonomy for

autonomous agents. In Jörg Müller, Michael Wooldridge, and Nicholas Jennings,

editors, Intelligent Agents III Agent Theories, Architectures, and Languages,

volume 1193 of Lecture Notes in Computer Science, pages 21–35. Springer Berlin

/ Heidelberg, 1997.

[26] M. R. Genesereth and R. E. Fikes. Knowledge interchange format, version 3.0

reference manual. Technical report, Computer Science Department, Stanford

University, 1992.

[27] Bernardo Cuenca Grau, Bijan Parsia, Evren Sirin, and Aditya Kalyanpur.

Modularizing owl ontologies. In Proceedings of the 4th International Semantic

Web Conference (Poster Track), 2005.

97

<http://www.w3.org/TR/daml+oil-reference>

References

[28] Thomas R. Gruber. A translation approach to portable ontology specifications.

Knowl. Acquis., 5(2):199–220, 1993.

[29] Volker Haarslev, Carsten Lutz, and Ralf Möller. A description logic with concrete

domains and a role-forming predicate operator. J. Log. Comput., 9(3):351–384,

1999.

[30] Peter Haase, Jeen Broekstra, Andreas Eberhart, and Raphael Volz. A comparison

of rdf query languages. In Proceedings of the Third International Semantic Web

Conference, Hiroshima, Japan, 2004., November 2004.

[31] J. Heflin and H. Muñoz-Avila. LCW-based agent planning for the semantic web. In

Ontologies and the Semantic Web Workshop at AAAI-02, pages 63–70, November

2002.

[32] Martin Hepp and Andreas Radinger. eClassOWL – the web ontology for products

and services, 2010. <http://www.heppnetz.de/projects/eclassowl/>.

[33] S. Heymans and Dirk Vermeir. A defeasible ontology language. In On the

Move to Meaningful Internet Systems, pages 1033–1046, London, UK, 2002.

Springer-Verlag.

[34] Bernhard Hollunder and Franz Baader. Qualifying number restrictions in concept

languages. In Proceedings of the 2nd International Conference on Principles of

Knowledge Representation and Reasoning, pages 335–346, 1991.

[35] Matthew Horridge, Nick Drummond, John Goodwin, Alan L. Rector, Robert

Stevens, and Hai Wang. The manchester owl syntax. In OWLED, 2006.

[36] Ian Horrocks. Semantic web: The story so far. In W4A ’07: Proceedings of

the 2007 international cross-disciplinary conference on Web accessibility (W4A),

pages 120–125, New York, NY, USA, 2007. ACM.

[37] Ian Horrocks, Bijan Parsia, Peter Patel-Schneider, and James Hendler. Semantic

web architecture: Stack or two towers? Principles and Practice of Semantic Web

Reasoning, pages 37–41, 2005.

98

<http://www.heppnetz.de/projects/eclassowl/>

References

[38] Ian Horrocks and Ulrike Sattler. A description logic with transitive and inverse

roles and role hierarchies. In Description Logics, 1998.

[39] Ian Horrocks and Ulrike Sattler. A tableaux decision procedure for SHOIQ. In

Proc. of the 19th Int. Joint Conf. on Artificial Intelligence (IJCAI 2005), pages

448–453, 2005.

[40] Ullrich Hustadt, Boris Motik, and Ulrike Sattler. Reasoning in description

logics by a reduction to disjunctive datalog. Journal of Automated Reasoning,

39(3):351–384, 2007.

[41] Ulrich Junker and Kurt Konolige. Computing the extensions of autoepistemic and

default logics with a truth maintenance system. In AAAI, pages 278–283, 1990.

[42] Mariusz Kaleta, Piotr Palka, Eugeniusz Toczylowski, and Tomasz Traczyk.

Electronic trading on electricity markets within a multi-agent framework. In

Ngoc Thanh Nguyen, Ryszard Kowalczyk, and Shyi-Ming Chen, editors, ICCCI,

volume 5796 of LNCS, pages 788–799, 2009.

[43] Aditya Kalyanpur. Debugging and repair of OWL ontologies. PhD thesis,

University of Maryland, 2006.

[44] Yarden Katz and Jennifer Golbeck. Social network-based trust in prioritized

default logic. In Proceedings of the Twenty-First National Conference onArtificial

Intelligence (AAAI-06, 2006.

[45] Vladimir Kolovski, Bijan Parsia, and Yarden Katz. Implementing OWL defaults.

In OWL: experiences and directions workshop, 2006.

[46] Michal Laclavik, Zoltan Balogh, Marian Babik, and Ladislav Hluchý. AgentOWL:

Semantic knowledge model and agent architecture. Computers and Artificial

Intelligence, 25(5), 2006.

[47] Douglas B. Lenat and R. V. Guha. Building Large Knowledge-Based Systems;

Representation and Inference in the Cyc Project. Addison-Wesley Longman

Publishing Co., Inc., Boston, MA, USA, 1st edition, 1989.

99

References

[48] Jacek Lewandowski and Henryk Rybinski. A hybrid method of indexing

multiple-inheritance hierarchies. In Proceedings of the 18th International

Symposium on Foundations of Intelligent Systems, ISMIS ’09, pages 211–220,

Berlin, Heidelberg, 2009. Springer-Verlag.

[49] Frank Manola and Eric Miller. RDF primer, 2004. <http://www.w3.org/TR/

rdf-primer/>.

[50] J McCarthy. Circumscription - a form of non-monotonic reasoning. Artificial

Intelligence, 13(1-2):27–39, 1980.

[51] Deborah L. McGuinness, Richard Fikes, Lynn Andrea Stein, and James A.

Hendler. Daml-ont: An ontology language for the semantic web. In Spinning

the Semantic Web, pages 65–93, 2003.

[52] Deborah L. McGuinness and Frank van Harmelen. OWL web ontology language

overview, 2004. <http://www.w3.org/TR/owl-features/>.

[53] Boris Motik, Rob Shearer, and Ian Horrocks. Hypertableau Reasoning for

Description Logics. Journal of Artificial Intelligence Research, 36:165–228, 2009.

[54] Ulf Nilsson and Jan Maluszynski. Logic, Programming and Prolog. Wiley, 1990.

[55] Donald Nute. Defeasible logic. In INAP, pages 87–114, 2001.

[56] Martin Odersky. The Scala Language Specification, Version 2.8. Programming

Methods Laboratory, EPFL, Switzerland, 2010.

[57] David Poole. Default logic. In Dov M. Gabbay, C. J. Hogger, and J. A. Robinson,

editors, Handbook of logic in artificial intelligence and logic programming,

volume 3, pages 189–215. Oxford University Press, 1994.

[58] Eric Prud’hommeaux and Andy Seaborne. SPARQL query language for rdf, 2008.

<http://www.w3.org/TR/rdf-sparql-query/>.

[59] R. Reiter. A logic for default reasoning. Artif. Intell., 13:81–132, 1980.

100

<http://www.w3.org/TR/rdf-primer/>
<http://www.w3.org/TR/rdf-primer/>
<http://www.w3.org/TR/owl-features/>
<http://www.w3.org/TR/rdf-sparql-query/>

References

[60] R. Reiter and G. Criscuolo. On interacting defaults. In Readings in nonmonotonic

reasoning, pages 94–100, San Francisco, CA, USA, 1987. Morgan Kaufmann

Publishers Inc.

[61] Vincent Risch and Camilla Schwind. Tableaux-based characterization and theorem

proving for default logic. J. Autom. Reasoning, 13(2):223–242, 1994.

[62] Dominik Ryżko. Default logics for reasoning and knowledge sharing in multi-agent

systems. PhD thesis, Politechnika Warszawska, 2007.

[63] Dominik Ryżko and Henryk Rybiński. Distributed default logic for multi-agent

system. In IAT ’06: Proceedings of the IEEE/WIC/ACM international conference

on Intelligent Agent Technology, pages 204–210, Washington, DC, USA, 2006.

[64] Dominik Ryżko, Henryk Rybiński, and Przemys law Wi ↪ech. Learning mechanism

for distributed default logic based mas - implementation considerations. In

Proceedings of the International IIS 08 Conference, pages 329–338, 2008.

[65] Ulrike Sattler. A concept language extended with different kinds of transitive

roles. In Advances in Artificial Intelligence, 20th Annual German Conference on

Artificial Intelligence, pages 333–345, 1996.

[66] Manfred Schmidt-Schauß and Gert Smolka. Attributive concept descriptions with

complements. Artificial Intelligence, 48(1):1–26, 1991.

[67] James G. Schmolze, Bolt Beranek, and Newman Inc. An overview of the KL-ONE

knowledge representation system. Cognitive Science, 9:171–216, 1985.

[68] Luciano Serafini and Andrei Tamilin. Local tableaux for reasoning in distributed

description logics. In Description Logics, 2004.

[69] Evren Sirin and Bijan Parsia. SPARQL-DL: SPARQL Query for OWL-DL.

In OWLED 2007: Proceedings of the Third International Workshop on OWL:

Experiences and Directions, Innsbruck, Austria, 2007.

[70] Evren Sirin, Bijan Parsia, Bernardo Cuenca Grau, Aditya Kalyanpur, and Yarden

Katz. Pellet: A practical owl-dl reasoner. Web Semant., 5(2):51–53, 2007.

101

References

[71] Kent A. Spackman, Ph. D, Keith E. Campbell, Ph. D, Roger A. Côté, and D. Sc.

(hon. SNOMED RT: A reference terminology for health care. In J. of the American

Medical Informatics Association, pages 640–644, 1997.

[72] Peter Stone and Manuela Veloso. Multiagent systems: A survey from a machine

learning perspective. Autonomous Robots, 8:345–383, 2000.

[73] Rudi Studer, V. Richard Benjamins, and Dieter Fensel. Knowledge engineering:

Principles and methods. Data Knowl. Eng., 25(1-2):161–197, 1998.

[74] Dmitry Tsarkov and Ian Horrocks. Fact++ description logic reasoner: System

description. In In Proc. of the Int. Joint Conf. on Automated Reasoning (IJCAR

2006, pages 292–297. Springer, 2006.

[75] Przemys law Wi ↪ech and Henryk Rybiński. A novel approach to default reasoning

for mas. In Proceedings of the Rough Sets and Current Trends in Computing - 7th

International Conference, RSCTC 2010, pages 484–493, 2010.

[76] William A. Woods. What’s in a Link: Foundations for Semantic Networks. In D.G.

Bobrow and A. Collins, editors, Representation and Understanding. Academic

Press, 1975.

102

Appendix A

Software technical documentation

The appendix presents technical details of the implemented software, which is described

in Chapter 6. Each layer of the system provides a set of Application Programmer’s

Interface (API) classes and methods. They can be used to embed the implemented

components into other projects, in which description logic with defaults can be used

for reasoning. The implementation is divided into four main components, which

comprise the four layers depicted in Figure 6.1. The description logic reasoner

provides fundamental DL inferences for subsequent layers. The default logic reasoner

provides the ability to build the sets of generating defaults for a DLD knowledge base

and provides credulous and skeptical inferences. The default transformations layer

implements the algorithms proposed in Chapter 4. Finally, the distributed reasoning

layer consists of a multi-agent system and reasoning procedures described in Chapter 5.

A.1 Description logic reasoner

The description logic reasoner implements the tableau algorithm for the ALC variant

of description logic. The package provides the functionality to parse a knowledge base

and input queries to form an internal data representation and allows executing queries

on the data.

At the core of this component lies the data representation of DL concept

descriptions. Figure A.1 shows the classes, which are used to form a parse tree of

Appendix A. Software technical documentation

Expression

Atom

name: String

TopConcept

BottomConcept

Not

c: Expression

And

c: Expression
d: Expression

Or

c: Expression
d: Expression

Some

r: Atom
c: Expression

Only

r: Atom
c: Expression

Figure A.1: Expression classes

a concept description. At the leafs of the tree are Atom objects representing concept

names or TopConcept or BottomConcept, which represent the top and bottom concept.

The Expression and Atom classes is further used to form facts, which comprise

the knowledge base. The Isa class represents the fact that an object a belongs to

a concept c (C(a)). The Relation class represents a concrete relation r between two

objects a and b (R(a, b)). The Gci is the general concept inclusion relation between two

concept descriptions (C v D). The Equiv and Definition represent the equivalence

relation between two concept descriptions (C ≡ D), where the former allows any

concept descriptions and the latter allows only an atomic concept name on the left

hand side of the relation.

104

A.1. Description logic reasoner

Statement

Fact

ABoxFact TBoxFact

Isa

a: Atom
c: Expression

Relation

r: Atom
a: Atom
b: Atom

Gci

c: Expression
d: Expression

Equiv

c: Expression
d: Expression

Definition

c: Atom
d: Expression

Figure A.2: Fact classes

The knowledge base is defined in terms of the ABox and TBox facts and its classes

are declared as follows:

case class ABox(val isas: List[Isa], val relations: List[Relation])

case class TBox(val gcis: List[Gci], val equivs: List[Equiv])

case class DLKnowledgeBase(val abox: ABox, val tbox: TBox)

It has to be noted that all of the above mentioned classes are definded as persistent

data structures, which means that an object, once created is never changed. All

methods, which modify these immutable object actually create a new object with the

modified information. This method is widely used in functional programming and

simplifies the implementation of algorithms without any serious overhead.

105

Appendix A. Software technical documentation

The description logic reasoner is implemented in terms of the following classes:

trait DLReasoner {

def entails(query: Fact): Boolean

def isConsistent: Boolean

}

class TableauDLReasoner extends DLReasoner

trait DLReasonerFactory {

def create(kb: DLKnowledgeBase): DLReasoner

}

TableauRule

apply(): RuleResult

AndRule OrRule SomeRule OnlyRule

Figure A.3: Rule classes

The implementation of the DLReasonerFactory trait creates an instatnce of the

DLReasoner trait. The TableauDLReasoner class is the implementation of the tableau

algorithm presented in Section 3.1.2. The reasoner operates on a list of tableau rules

shown in Figure A.3. The reasoner tries to apply each rule from the list in the given

order. If none of the rules can be applied, the current tableau branch is treated as open

and the input knowledge base is consistent. If a clash is detected, the algorithm tries

to apply the tableau rules to subsequent branches. The results of applying a tableau

rule are defined in terms of the RuleResult class, which is defined as follows:

class RuleResult

case object NotApplied extends RuleResult

case class Applied(tab: Tableau) extends RuleResult

case class Branch(tab1: Tableau, tab2: Tableau) extends RuleResult

106

A.2. Default logic reasoner

The rule may either be unapplicable, or it may produce one or two resulting

tableaux. If two tableaux are generated, they form two branches, which have to be

expanded.

In order to load a knowledge base from a file or to parse a user input query, the

DLParser class provides the functionality to parse one fact or multiple facts defined

one in each line. The parser accepts the Manchester OWL syntax for defining concepts.

The following snippet of code shows an example usage of the description logic

reasoner component:

val parser = new DLParser

val lines = scala.io.Source.fromFile("kb.txt").getLines

val kb = parser.parseFacts(lines)

val dlReasoner = TableauDLReasonerFactory.create(kb)

val queryString = "Woman(MARY)"

val query = parser.parseFact(queryString)

println(queryString + ": " + dlReasoner.entails(query))

A.2 Default logic reasoner

The default logic reasoner component builds on top of the description logic reasoner by

adding the capabilities to represent defaults and provide inferences from a knowledge

base with defaults. Figure A.4 shows the Default class, which represents a default,

where all elements are concept descriptions. Furthermore, the ClosedDefault class

combines an open default with a concrete individual forming a closed default.

The DLD (description logic with defaults) knowledge base is defined as a class

aggregating a DL knowledge base and a set of defaults.

case class DLDKnowledgeBase(dl: DLKnowledgeBase, defaults: Set[Default])

107

Appendix A. Software technical documentation

Statement

Default

pre: Expression
jus: Expression
con: Expression

ClosedDefault

d: Default
a: Atom

Figure A.4: Default classes

The reasoning service for default logic is defined as follows:

class DLDReasoner(val kb: DLDKnowledgeBase,

val dlReasonerFactory: DLReasonerFactory) {

def entails(query: Fact, skeptical: Boolean): Boolean

}

The DLDReasoner uses the supplied DL reasoner and provides the entails()

method, which can answer skeptical and credulous queries, as indicated by the second

argument. Similarly to the DLParser, the DLDParser class can be applied to parse a

DLD knowledge base containing both DL statements and defaults. One of the more

important functions executed while determining the extensions of a default theory

is generatingDefaultSets(), which computes the sets of generating defaults for all

extensions. It is an implementatoin of the Algorithm 3.1 presented in Chapter 3 and

is declared as follows:

def generatingDefaultSets(kb: DLDKnowledgeBase):

Iterable[Iterable[ClosedDefault]]

This function actually returns a set of extensions, each expressed as a set of closed

defaults. Based on this information answers to both credulous and skeptical queries

can be derived.

108

A.3. Default transformations

A.3 Default transformations

The default transformations component implements Algorithm 4.1. The query method

answers a query in the form A v B? returning one of the following results:

• An empty set representing False

• A single-element set containing the subsumption statement A v B

• A set of defaults in the form
A : B u J

B

The DefaultTransformations class is defined as follows:

class DefaultTransformations {

def query(query: Fact, kb: DLDKnowledgeBase): Set[Statement]

}

A.4 Distributed reasoning

The distributed reasoning implementations is defined in terms of the following classes:

class SendQueryRule extends TableauRule

class QueryingDLReasoner extends TableauDLReasoner // includes SendQueryRule

class ReasoningAgent(val kb: DLDKnowledgeBase) extends Actor

class ReasoningAgentTask(val query: Query, var kb: DLDKnowledgeBase)

The QueryingDLReasoner is an extension to the tableau reasoner, which adds

an additional rule presented in Figure 5.2 and implemented as the SendQueryRule

class. The ReasoningAgent class implements a single agent, which possesses its own

knowledge base and can connect to other agents in the process of reasoning. The

ReasoningAgentTask encapsulates one resoning task and is initialized with a query

received by the agent.

Figure A.5 presents the hierarchy of classes with the base class Query represent the

possible queries, which an agent can receive. The following simple code is used to send

a query to an agent and store the result value.

109

Appendix A. Software technical documentation

Query

DefaultQuery

gci: Gci

FinalQuery

fact: Fact

SkepticalQuery CredulousQuery

Figure A.5: Query classes

val agent: ReasoningAgent

val query: Query

val response = agent !? query

The !? operator is a standard method to send messages and receive replies in the

Scala Actors library. This code stores the agent’s reply in the response variable.

110

	Introduction
	Related work
	Semantic Web
	Ontologies
	Ontology languages
	Description Logic
	OWL
	Open and closed world assumptions

	Distributed Environment
	Multi-Agent Systems
	Knowledge Distribution

	Default Logic
	Distributed Default Logic
	Embedding Defaults in Description Logic

	Basic Concepts and Definitions
	Description Logics
	Definitions
	Tableau reasoning algorithm

	Distributed Description Logic
	Default Logic
	Definitions
	Default Reasoning

	Description Logic with Defaults

	Distributed Description Logic with Defaults
	Motivating example
	Transforming defaults
	Reasoning with default transformations

	DDLD-based Multi-Agent System
	Motivating examples
	Model of the system
	Global knowledge
	Domain knowledge
	Communication language
	Environmental knowledge

	Distributed reasoning
	Handling inconsistency
	Knowledge assimilation and caching
	Agent network topology

	Implementation and evaluation
	System architecture
	The Description Logic Reasoner
	The Default Logic Reasoner
	Distributed Reasoning

	Test cases
	Chain of agents
	Star topology
	Pizza ontology

	Summary

	Conclusions
	Abbreviations and Symbols
	References
	Software technical documentation
	Description logic reasoner
	Default logic reasoner
	Default transformations
	Distributed reasoning

